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 The Story behind the Succinctly Series 
 of Books 

Daniel Jebaraj, Vice President 
Syncfusion, Inc. 

taying on the cutting edge 

As many of you may know, Syncfusion is a provider of software components for the 
Microsoft platform. This puts us in the exciting but challenging position of always 
being on the cutting edge. 

Whenever platforms or tools are shipping out of Microsoft, which seems to be about 
every other week these days, we have to educate ourselves, quickly. 

Information is plentiful but harder to digest 

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.  

While more information is becoming available on the Internet and more and more books are 
being published, even on topics that are relatively new, one aspect that continues to inhibit us is 
the inability to find concise technology overview books.  

We are usually faced with two options: read several 500+ page books or scour the web for 
relevant blog posts and other articles. Just as everyone else who has a job to do and customers 
to serve, we find this quite frustrating. 

The Succinctly series 

This frustration translated into a deep desire to produce a series of concise technical books that 
would be targeted at developers working on the Microsoft platform.  

We firmly believe, given the background knowledge such developers have, that most topics can 
be translated into books that are between 50 and 100 pages.  

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything 
wonderful born out of a deep desire to change things for the better? 

The best authors, the best content 

Each author was carefully chosen from a pool of talented experts who shared our vision. The 
book you now hold in your hands, and the others available in this series, are a result of the 
authors’ tireless work. You will find original content that is guaranteed to get you up and running 
in about the time it takes to drink a few cups of coffee. 

S 
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Free forever  

Syncfusion will be working to produce books on several topics. The books will always be free. 
Any updates we publish will also be free.  

Free? What is the catch? 

There is no catch here. Syncfusion has a vested interest in this effort.  

As a component vendor, our unique claim has always been that we offer deeper and broader 
frameworks than anyone else on the market. Developer education greatly helps us market and 
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn 
the moon to cheese!” 

Let us know what you think 

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at 
succinctly-series@syncfusion.com.  

We sincerely hope you enjoy reading this book and that it helps you better understand the topic 
of study. Thank you for reading. 

 

 

 

 

 

 

 

 

 

 Please follow us on Twitter and “Like” us on Facebook to help us spread the  
word about the Succinctly series! 

                      

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion


 

 
9 

About the Author 

James McCaffrey works for Microsoft Research in Redmond, WA. He holds a B.A. in 
psychology from the University of California at Irvine, a B.A. in applied mathematics from 
California State University at Fullerton, an M.S. in information systems from Hawaii Pacific 
University, and a doctorate from the University of Southern California. James enjoys exploring 
all forms of activity that involve human interaction and combinatorial mathematics, such as the 
analysis of betting behavior associated with professional sports, machine learning algorithms, 
and data mining. 



 

 

10 

Acknowledgements 

My thanks to all the people who contributed to this book. The Syncfusion team conceived the 
idea for this book and then made it happen—Hillary Bowling, Graham High, and Tres Watkins. 
The lead technical editor, Chris Lee, thoroughly reviewed the book's organization, code quality, 
and calculation accuracy. Several of my colleagues at Microsoft acted as technical and editorial 
reviewers, and provided many helpful suggestions for improving the book in areas such as 
overall correctness, coding style, readability, and implementation alternatives—many thanks to 
Jamilu Abubakar, Todd Bello, Cyrus Cousins, Marciano Moreno Diaz Covarrubias, Suraj Jain, 
Tomasz Kaminski, Sonja Knoll, Rick Lewis, Chen Li, Tom Minka, Tameem Ansari Mohammed, 
Delbert Murphy, Robert Musson, Paul Roy Owino, Sayan Pathak, David Raskino, Robert 
Rounthwaite, Zhefu Shi, Alisson Sol, Gopal Srinivasa, and Liang Xie. 

J.M. 



 

 
11 

Chapter 1  k-Means Clustering 

Introduction 

Data clustering is the process of placing data items into groups so that similar items are in the 
same group (cluster) and dissimilar items are in different groups. After a data set has been 
clustered, it can be examined to find interesting patterns. For example, a data set of sales 
transactions might be clustered and then inspected to see if there are differences between the 
shopping patterns of men and women. 

There are many different clustering algorithms. One of the most common is called the k-means 
algorithm. A good way to gain an understanding of the k-means algorithm is to examine the 
screenshot of the demo program shown in Figure 1-a. The demo program groups a data set of 
10 items into three clusters. Each data item represents the height (in inches) and weight (in 
kilograms) of a person. 

The data set was artificially constructed so that the items clearly fall into three distinct clusters. 
But even with only 10 simple data items that have only two values each, it is not immediately 
obvious which data items are similar: 

(73.0, 72.6) 
(61.0, 54.4) 
(67.0, 99.9) 
(68.0, 97.3) 
(62.0, 59.0) 
(75.0, 81.6) 
(74.0, 77.1) 
(66.0, 97.3) 
(68.0, 93.3) 
(61.0, 59.0) 

However, after k-means clustering, it is clear that there are three distinct groups that might be 
labeled "medium-height and heavy", "tall and medium-weight", and "short and light": 

(67.0, 99.9) 
(68.0, 97.3) 
(66.0, 97.3) 
(68.0, 93.3) 

(73.0, 72.6) 
(75.0, 81.6) 
(74.0, 77.1) 

(61.0, 54.4) 
(62.0, 59.0) 
(61.0, 59.0) 

The k-means algorithm works only with strictly numeric data. Each data item in the demo has 
two numeric components (height and weight), but k-means can handle data items with any 
number of values, for example, (73.0, 72.6, 98.6), where the third value is body temperature. 
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Figure 1-a: The k-Means Algorithm in Action   

Notice that in the demo program, the number of clusters (the k in k-means) was set to 3. Most 
clustering algorithms, including k-means, require that the user specify the number of clusters, as 
opposed to the program automatically finding an optimal number of clusters. The k-means 
algorithm is an example of what is called an unsupervised machine learning technique because 
the algorithm works directly on the entire data set, without any special training items (with 
cluster membership pre-specified) required. 
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The demo program initially assigns each data tuple randomly to one of the three cluster IDs. 
After the clustering process finished, the demo displays the resulting clustering: { 1, 2, 0, 0, 2, 1, 
1, 0, 0, 2 }, which means data item 0 is assigned to cluster 1, data item 1 is assigned to cluster 
2, data item 2 is assigned to cluster 0, data item 3 is assigned to cluster 0, and so on.  

Understanding the k-Means Algorithm 

A naive approach to clustering numeric data would be to examine all possible groupings of the 
source data set and then determine which of those groupings is best. There are two problems 
with this approach. First, the number of possible groupings of a data set grows astronomically 
large, very quickly. For example, the number of ways to cluster n = 50 into k = 3 groups is: 

119,649,664,052,358,811,373,730 

Even if you could somehow examine one billion groupings (also called partitions) per second, it 
would take you well over three million years of computing time to analyze all possibilities. The 
second problem with this approach is that there are several ways to define exactly what is 
meant by the best clustering of a data set. 

There are many variations of the k-means algorithm. The basic k-means algorithm, sometimes 
called Lloyd's algorithm, is remarkably simple. Expressed in high-level pseudo-code, k-means 
clustering is: 

randomly assign all data items to a cluster 
loop until no change in cluster assignments 
  compute centroids for each cluster 
  reassign each data item to cluster of closest centroid 
end  

Even though the pseudo-code is very short and simple, k-means is somewhat subtle and best 
explained using pictures. The left-hand image in Figure 1-b is a graph of the 10 height-weight 
data items in the demo program. Notice an optimal clustering is quite obvious. The right image 
in the figure shows one possible random initial clustering of the data, where color (red, yellow, 
green) indicates cluster membership. 

 

Figure 1-b: k-Means Problem and Cluster Initialization 
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After initializing cluster assignments, the centroids of each cluster are computed as shown in the 
left-hand graph in Figure 1-c. The three large dots are centroids. The centroid of the data items 
in a cluster is essentially an average item. For example, you can see that the four data items 
assigned to the red cluster are slightly to the left, and slightly below, the center of all the data 
points. 

There are several other clustering algorithms that are similar to the k-means algorithm but use a 
different definition of a centroid item. This is why the k-means is named "k-means" rather than 
"k-centroids." 

 

Figure 1-c: Compute Centroids and Reassign Clusters 

After the centroids of each cluster are computed, the k-means algorithm scans each data item 
and reassigns each to the cluster that is associated with the closet centroid, as shown in the 
right-hand graph in Figure 1-c. For example, the three data points in the lower left part of the 
graph are clearly closest to the red centroid, so those three items are assigned to the red 
cluster.  

The k-means algorithm continues iterating the update-centroids and update-clustering process 
as shown in Figure 1-d. In general, the k-means algorithm will quickly reach a state where there 
are no changes to cluster assignments, as shown in the right-hand graph in Figure 1-d. 

 

Figure 1-d: Update-Centroids and Update-Clustering Until No Change 
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The preceding explanation of the k-means algorithm leaves out some important details. For 
example, just how are data items initially assigned to clusters? Exactly what does it mean for a 
cluster centroid to be closest to a data item? Is there any guarantee that the update-centroids, 
update-clustering loop will exit? 

Demo Program Overall Structure 

To create the demo, I launched Visual Studio and selected the new C# console application 
template. The demo has no significant .NET version dependencies, so any version of Visual 
Studio should work. 

After the template code loaded into the editor, I removed all using statements at the top of the 

source code, except for the single reference to the top-level System namespace. In the Solution 
Explorer window, I renamed the Program.cs file to the more descriptive ClusterProgram.cs, and 
Visual Studio automatically renamed class Program to ClusterProgram. 

The overall structure of the demo program, with a few minor edits to save space, is presented in 
Listing 1-a. Note that in order to keep the size of the example code small, and the main ideas 
as clear as possible, the demo programs violate typical coding style guidelines and omit error 
checking that would normally be used in production code. The demo program class has three 
static helper methods. Method ShowData displays the raw source data items. 

using System; 
namespace ClusterNumeric 
{ 
  class ClusterProgram 
  { 
    static void Main(string[] args) 
    { 
      Console.WriteLine("\nBegin k-means clustering demo\n"); 
 
      double[][] rawData = new double[10][]; 
      rawData[0] = new double[] { 73, 72.6 }; 
      rawData[1] = new double[] { 61, 54.4 }; 
      // etc.  
      rawData[9] = new double[] { 61, 59.0 }; 
 
      Console.WriteLine("Raw unclustered data:\n"); 
      Console.WriteLine(" ID   Height (in.)   Weight (kg.)"); 
      Console.WriteLine("---------------------------------"); 
      ShowData(rawData, 1, true, true); 
 
      int numClusters = 3; 
      Console.WriteLine("\nSetting numClusters to " + numClusters); 
 
      Console.WriteLine("\nStarting clustering using k-means algorithm"); 
      Clusterer c = new Clusterer(numClusters); 
      int[] clustering = c.Cluster(rawData); 
      Console.WriteLine("Clustering complete\n"); 
 
      Console.WriteLine("Final clustering in internal form:\n"); 
      ShowVector(clustering, true); 
 
      Console.WriteLine("Raw data by cluster:\n"); 
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      ShowClustered(rawData, clustering, numClusters, 1); 
 
      Console.WriteLine("\nEnd k-means clustering demo\n"); 
      Console.ReadLine(); 
    } 
 
    static void ShowData(double[][] data, int decimals, bool indices, 
      bool newLine) { . . } 
    static void ShowVector(int[] vector, bool newLine) { . . } 
    static void ShowClustered(double[][] data, int[] clustering, 
      int numClusters, int decimals) { . . } 
  } 
 
  public class Clusterer { . . } 
 
} // ns 

Listing 1-a: k-Means Demo Program Structure 

Helper ShowVector displays the internal clustering representation, and method ShowClustered 
displays the source data after it has been clustered, grouped by cluster. 

All the clustering logic is contained in a single program-defined class named Clusterer. All the 
program logic is contained in the Main method. The Main method begins by setting up 10 hard-
coded, height-weight data items in an array-of-arrays style matrix: 

static void Main(string[] args) 
{ 
  Console.WriteLine("\nBegin k-means clustering demo\n"); 
  double[][] rawData = new double[10][]; 
  rawData[0] = new double[] { 73, 72.6 }; 
. . .  

In a non-demo scenario, you would likely have data stored in a text file, and would load the data 
into memory using a helper function, as described in the next section. The Main method 
displays the raw data like so: 

Console.WriteLine("Raw unclustered data:\n"); 
Console.WriteLine(" ID   Height (in.)   Weight (kg.)"); 
Console.WriteLine("---------------------------------"); 
ShowData(rawData, 1, true, true); 

The four arguments to method ShowData are the matrix of type double to display, the number of 
decimals to display for each value, a Boolean flag to display indices or not, and a Boolean flag 
to print a final new line or not. Method ShowData is defined in Listing 1-b. 

static void ShowData(double[][] data, int decimals, bool indices, bool newLine) 
{ 
  for (int i = 0; i < data.Length; ++i) 
  { 
    if (indices == true) 
      Console.Write(i.ToString().PadLeft(3) + "  "); 
    for (int j = 0; j < data[i].Length; ++j) 
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    { 
      double v = data[i][j]; 
      Console.Write(v.ToString("F" + decimals) + "    "); 
    } 
    Console.WriteLine(""); 
  } 
  if (newLine == true) 
    Console.WriteLine(""); 
}  

Listing 1-b: Displaying the Raw Data 

One of many alternatives to consider is to pass to method ShowData an additional string array 
parameter named something like "header" that contains column names, and then use that 
information to display column headers. 

In method Main, the calling interface to the clustering routine is very simple: 

int numClusters = 3; 
Console.WriteLine("\nSetting numClusters to " + numClusters); 
Console.WriteLine("\nStarting clustering using k-means algorithm"); 
Clusterer c = new Clusterer(numClusters); 
int[] clustering = c.Cluster(rawData); 
Console.WriteLine("Clustering complete\n"); 

The program-defined Clusterer constructor accepts a single argument, which is the number of 
clusters to assign the data items to. The Cluster method accepts a matrix of data items and 
returns the resulting clustering in the form of an integer array, where the array index value is the 
index of a data item, and the array cell value is a cluster ID. In the screenshot in Figure 1-a, the 
return array has the following values: 

{ 1, 2, 0, 0, 2, 1, 0, 0, 2 } 

This means data item [0], which is (73.0, 72.6), is assigned to cluster 1, data [1] is assigned to 
cluster 2, data [2] is assigned to cluster 0, data [3] is assigned to cluster 0, and so on. 

The Main method finishes by displaying the clustering, and displaying the source data grouped 
by cluster ID: 

. . . 
  Console.WriteLine("Final clustering in internal form:\n"); 
  ShowVector(clustering, true); 
 
  Console.WriteLine("Raw data by cluster:\n"); 
  ShowClustered(rawData, clustering, numClusters, 1); 
 
  Console.WriteLine("\nEnd k-means clustering demo\n"); 
  Console.ReadLine(); 
} 

Helper method ShowVector is defined: 

static void ShowVector(int[] vector, bool newLine) 
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{ 
  for (int i = 0; i < vector.Length; ++i) 
    Console.Write(vector[i] + " "); 
  if (newLine == true) Console.WriteLine("\n"); 
} 

An alternative to relying on a static helper method to display the clustering result is to define a 
class ToString method along the lines of: 

Console.WriteLine(c.ToString()); // display clustering[] 

Helper method ShowClustered displays the source data in clustered form and is presented in 
Listing 1-c. Method ShowClustered makes multiple passes through the data set that has been 
clustered. A more efficient, but significantly more complicated alternative, is to define a local 
data structure, such as an array of List objects, and then make a first, single pass through the 
data, storing the clusterIDs associated with each data item. Then a second, single pass through 
the data structure could print the data in clustered form. 

static void ShowClustered(double[][] data, int[] clustering, int numClusters, 
  int decimals) 
{ 
  for (int k = 0; k < numClusters; ++k) 
  { 
    Console.WriteLine("==================="); 
    for (int i = 0; i < data.Length; ++i) 
    { 
      int clusterID = clustering[i]; 
      if (clusterID != k) continue; 
      Console.Write(i.ToString().PadLeft(3) + " "); 
      for (int j = 0; j < data[i].Length; ++j) 
      { 
        double v = data[i][j]; 
        Console.Write(v.ToString("F" + decimals) + " "); 
      } 
      Console.WriteLine(""); 
    } 
    Console.WriteLine("==================="); 
  } // k 
} 

Listing 1-c: Displaying the Data in Clustered Form 

An alternative to using a static method to display the clustered data is to implement a class 
member ToString method to do so.  

Loading Data from a Text File 

In non-demo scenarios, the data to be clustered is usually stored in a text file. For example, 
suppose the 10 data items in the demo program were stored in a comma-delimited text file, 
without a header line, named HeightWeight.txt like so: 
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73.0,72.6 
61.0,54.4 
. . . 
61.0,59.0 

One possible implementation of a LoadData method is presented in Listing 1-d. As defined, 
method LoadData accepts input parameters numRows and numCols for the number of rows and 

columns in the data file. In general, when working with machine learning, information like this is 
usually known. 

static double[][] LoadData(string dataFile, int numRows, int numCols, char delimit) 
{ 
  System.IO.FileStream ifs = new System.IO.FileStream(dataFile, System.IO.FileMode.Open); 
  System.IO.StreamReader sr = new System.IO.StreamReader(ifs); 
  string line = ""; 
  string[] tokens = null; 
  int i = 0; 
  double[][] result = new double[numRows][]; 
  while ((line = sr.ReadLine()) != null) 
  { 
    result[i] = new double[numCols]; 
    tokens = line.Split(delimit); 
    for (int j = 0; j < numCols; ++j) 
      result[i][j] = double.Parse(tokens[j]); 
     ++i; 
  } 
  sr.Close(); 
  ifs.Close(); 
  return result; 
} 

Listing 1-d: Loading Data from a Text File 

Calling method LoadData would look something like: 

string dataFile = "..\\..\\HeightWeight.txt"; 
double[][] rawData = LoadData(dataFile, 10, 2, ','); 

An alternative is to programmatically scan the data for the number of rows and columns. In 
pseudo-code it would look like: 

numRows := 0 
open file 
while not EOF 
  numRows := numRows + 1 
end loop 
close file 
allocate result array with numRows 
open file 
while not EOF 
  read and parse line with numCols 
  allocate curr row of array with numCols 
  store line 
end loop 
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close file 
return result matrix 

Note that even if you are a very experienced programmer, unless you work with scientific or 
numerical problems often, you may not be familiar with C# array-of-arrays matrices. The matrix 
coding syntax patterns can take a while to become accustomed to.  

The Key Data Structures 

The important data structures for the k-means clustering program are illustrated in Figure 1-e. 
The array-of-arrays style matrix named data shows how the 10 height-weight data items 

(sometimes called data tuples) are stored in memory. For example, data[2][0] holds the 

height of the third person (67 inches) and data[2][1] holds the weight of the third person (99.9 

kilograms). In code, data[2] represents the third row of the matrix, which is an array with two 

cells that holds the height and weight of the third person. There is no convenient way to access 
an entire column of an array-of-arrays style matrix. 

 

Figure 1-e: k-Means Key Data Structures 

Unlike many programming languages, C# supports true, multidimensional arrays. For example, 
a matrix to hold the same values as the one shown in Figure 1-e could be declared and 
accessed like so: 

double[,] data = new double[10,2]; // 10 rows, 2 columns 
data[0,0] = 73; 
data[0,1] = 72.6; 
. . . 

However, using array-of-arrays style matrices is much more common in C# machine learning 
scenarios, and is generally more convenient because entire rows can be easily accessed. 
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The demo program maintains an integer array named clustering to hold cluster assignment 

information. The array indices (0, 1, 2, 3, . . 9) represent indices of the data items. The array cell 
values { 2, 0, 1, . . 2 } represent the cluster IDs. So, in the figure, data item 0 (which is 73, 72.6) 
is assigned to cluster 2. Data item 1 (which is 61, 54.4) is assigned to cluster 0. And so on. 

There are many alternative ways to store cluster assignment information that trade off efficiency 
and clarity. For example, you could use an array of List objects, where each List collection holds 
the indices of data items that belong to the same cluster. As a general rule, the relationship 
between a machine learning algorithm and the data structures used is very tight, and a change 
to one of the data structures will require significant changes to the algorithm code. 

In Figure 1-e, the array clusterCounts holds the number of data items that are assigned to a 

cluster at any given time during the clustering process. The array indices (0, 1, 2) represent 
cluster IDs, and the cell values { 3, 3, 4 } represent the number of data items. So, cluster 0 has 
three data items assigned to it, cluster 1 also has three items, and cluster 2 has four data items. 

In Figure 1-e, the array-of-arrays matrix centroids holds what you can think of as average 

data items for each cluster. For example, the centroid of cluster 0 is { 67.67, 76.27 }. The three 
data items assigned to cluster 0 are items 1, 3, and 6, which are { 61, 54.4 }, { 68, 97.3 } and      
{ 74, 77.1 }. The centroid of a set of vectors is just a vector where each component is the 
average of the set's values. For example: 

centroid[0] = (61 + 68 + 74) / 3 , (54.4 + 97.3 + 77.1) / 3 
                  = 203 / 3 , 228.8 / 3 
                  = (67.67, 76.27) 

Notice that like the close relationship between an algorithm and the data structures used, there 
is a very tight coupling among the key data structures. Based on my experience with writing 
machine learning code, it is essential (for me at least) to have a diagram of all data structures 
used. Most of the coding bugs I generate are related to the data structures rather than the 
algorithm logic. 

The Clusterer Class 

A program-defined class named Clusterer houses the k-means clustering algorithm code. The 
structure of the class is presented in Listing 1-e. 

public class Clusterer 
{ 
  private int numClusters; 
  private int[] clustering;  
  private double[][] centroids;  
  private Random rnd;  
 
  public Clusterer(int numClusters) { . . } 
  public int[] Cluster(double[][] data) { . . } 
  private bool InitRandom(double[][] data, int maxAttempts) { . . } 
  private static int[] Reservoir(int n, int range) { . . } 
  private bool UpdateCentroids(double[][] data) { . . } 
  private bool UpdateClustering(double[][] data) { . . } 
  private static double Distance(double[] tuple, double[] centroid) { . . } 
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  private static int MinIndex(double[] distances) { . . } 
} 

Listing 1-e: Program-Defined Clusterer Class 

Class Clusterer has four data members, two public methods, and six private helper methods. 
Three of four data members—variable numClusters, array clustering, and matrix 

centroids—are explained by the diagram in Figure 1-e. The fourth data member, rnd, is a 

Random object used during the k-means initialization process. 

Data member rnd is used to generate pseudo-random numbers when data items are initially 

assigned to random clusters. In most clustering scenarios there is just a single clustering object, 
but if multiple clustering objects are needed, you may want to consider decorating data member 
rnd with the static keyword so that there is just a single random number generator shared 

between clustering object instances. 

Class Clusterer exposes just two public methods: a single class constructor, and a method 
Cluster. Method Cluster calls private helper methods InitRandom, UpdateCentroids, and 
UpdateClustering. Helper method UpdateClustering calls sub-helper static methods Distance 
and MinIndex. 

The class constructor is short and straightforward: 

public Clusterer(int numClusters) 
{ 
  this.numClusters = numClusters; 
  this.centroids = new double[numClusters][]; 
  this.rnd = new Random(0); 
} 

The single input parameter, numClusters, is assigned to the class data member of the same 

name. You may want to perform input error checking to make sure the value of parameter 
numClusters is greater than or equal to 2. The ability to control when to omit error checking to 

improve performance is an advantage of writing custom machine learning code. 

The constructor allocates the rows of the data member matrix centroids, but cannot allocate 

the columns because the number of columns will not be known until the data to be clustered is 
presented. Similarly, array clustering cannot be allocated until the number of data items is 

known. The Random object is initialized with a seed value of 0, which is arbitrary. Different seed 
values can produce significantly different clustering results. A common design option is to pass 
the seed value as an input parameter to the constructor.  

If you refer back to Listing 1-a, the key calling code is: 

int numClusters = 3; 
Clusterer c = new Clusterer(numClusters); 
int[] clustering = c.Cluster(rawData); 



 

 
23 

Notice the Clusterer class does not learn about the data to be clustered until that data is passed 
to the Cluster method. An important alternative design is to include a reference to the data to be 
clustered as a class member, and pass the reference to the class constructor. In other words, 
the Clusterer class would contain an additional field: 

private double[][] rawData; 

And the constructor would then be: 

public Clusterer(int numClusters, double[][] rawData) 
{ 
  this.numClusters = numClusters; 
  this.rawData = rawData; 
  . . . 
} 

The pros and cons of this design alternative are a bit subtle. One advantage of including the 
data to be clustered is that it leads to a slightly cleaner design. In my opinion, the two design 
approaches have roughly equal merit. The decision of whether to pass data to a class 
constructor or to a public method is a recurring theme when creating custom machine learning 
code. 

The Cluster Method 

Method Cluster is presented in Listing 1-f. The method accepts a reference to the data to be 
clustered, which is stored in an array-of-arrays style matrix.  

public int[] Cluster(double[][] data) 
{ 
  int numTuples = data.Length; 
  int numValues = data[0].Length; 
  this.clustering = new int[numTuples]; 
 
  for (int k = 0; k < numClusters; ++k)  
    this.centroids[k] = new double[numValues]; 
 
  InitRandom(data); 
   
  Console.WriteLine("\nInitial random clustering:"); 
  for (int i = 0; i < clustering.Length; ++i) 
    Console.Write(clustering[i] + " "); 
  Console.WriteLine("\n"); 
 
  bool changed = true; // change in clustering? 
  int maxCount = numTuples * 10; // sanity check 
  int ct = 0; 
  while (changed == true && ct < maxCount) 
  { 
    ++ct; 
    UpdateCentroids(data);  
    changed = UpdateClustering(data); 
  } 
 
  int[] result = new int[numTuples]; 
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  Array.Copy(this.clustering, result, clustering.Length); 
  return result; 
} 

Listing 1-f: The Cluster Method 

The definition of method Cluster begins with: 

public int[] Cluster(double[][] data) 
{ 
  int numTuples = data.Length; 
  int numValues = data[0].Length; 
  this.clustering = new int[numTuples]; 
. . . 

The first two statements determine the number of data items to be clustered and the number of 
values in each data item. Strictly speaking, these two variables are unnecessary, but using them 
makes the code somewhat easier to understand. Recall that class member array clustering 

and member matrix centroids could not be allocated in the constructor because the size of the 

data to be clustered was not known. So, clustering and centroids are allocated in method 

Cluster when the data is first known. 

Next, the columns of the data member matrix centroids are allocated: 

for (int k = 0; k < numClusters; ++k)  
  this.centroids[k] = new double[numValues]; 

Here, class member centroids is referenced using the this keyword, but member 

numClusters is referenced without the keyword. In a production environment, you would likely 

use a standardized coding style. 

Next, method Cluster initializes the clustering with random assignments by calling helper 
method InitRandom: 

InitRandom(data); 
Console.WriteLine("\nInitial random clustering:"); 
for (int i = 0; i < clustering.Length; ++i) 
  Console.Write(clustering[i] + " "); 
Console.WriteLine("\n"); 

The k-means initialization process is a major customization point and will be discussed in detail 
shortly. After the call to InitRandom, the demo program displays the initial clustering to the 
command shell purely for demonstration purposes. The ability to insert display statements 
anywhere is another advantage of writing custom machine learning code, compared to using an 
existing tool or API set where you don't have access to source code. 

The heart of method Cluster is the update-centroids, update-clustering loop: 

bool changed = true; 
int maxCount = numTuples * 10; // sanity check 
int ct = 0; 
while (changed == true && ct <= maxCount) 
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{ 
  ++ct; 
  UpdateCentroids(data); 
  changed = UpdateClustering(data); 
} 

Helper method UpdateCentroids uses the current clustering to compute the centroid for each 
cluster. Helper method UpdateClustering then uses the new centroids to reassign each data 
item to the cluster that is associated with the closest centroid. The method returns false if no 
data items change clusters. 

The k-means algorithm typically reaches a stable clustering very quickly. Mathematically, k-
means is guaranteed to converge to a local optimum solution. But this fact does not mean that 
an implementation of the clustering process is guaranteed to terminate. It is possible, although 
extremely unlikely, for the algorithm to oscillate, where one data item is repeatedly swapped 
between two clusters. To prevent an infinite loop, a sanity counter is maintained. Here, the 
maximum loop count is set to numTuples * 10, which is sufficient in most practical scenarios.  

Method Cluster finishes by copying the values in class member array clustering into a local 

return array. This allows the calling code to access and view the clustering without having to 
implement a public method along the lines of a routine named GetClustering. 

. . . 
  int[] result = new int[numTuples]; 
  Array.Copy(this.clustering, result, clustering.Length); 
  return result; 
} 

You might want to consider checking the value of variable ct before returning the clustering 

result. If the value of variable ct equals the value of maxCount, then method Cluster terminated 

before reaching a stable state, which likely indicates something went very wrong. 

Clustering Initialization 

The initialization process is critical to the k-means algorithm. After initialization, clustering is 
essentially deterministic, so a k-means clustering result depends entirely on how the clustering 
is initialized. There are two main initialization approaches. The demo program assigns each 
data tuple to a random cluster ID, making sure that each cluster has at least one tuple assigned 
to it. The definition of method InitRandom begins with: 

private void InitRandom(double[][] data) 
{ 
  int numTuples = data.Length; 
  int clusterID = 0; 
  for (int i = 0; i < numTuples; ++i) 
  { 
    clustering[i] = clusterID++; 
    if (clusterID == numClusters) 
      clusterID = 0; 
  } 
. . .  
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The idea is to make sure that each cluster has at least one data tuple assigned. For the demo 
data with 10 tuples, the code here would initialize class member array clustering to { 0, 1, 2, 

0, 1, 2, 0, 1, 2, 0 }. This semi-random initial assignment of data tuples to clusters is fine for most 
purposes, but it is normal to then further randomize the cluster assignments like so: 

  for (int i = 0; i < numTuples; ++i) 
  { 
    int r = rnd.Next(i, clustering.Length); // pick a cell 
    int tmp = clustering[r]; // get the cell value 
    clustering[r] = clustering[i]; // swap values 
    clustering[i] = tmp; 
  } 
} // InitRandom 

This randomization code uses an extremely important mini-algorithm called the Fisher-Yates 
shuffle. The code makes a single scan through the clustering array, swapping pairs of randomly 
selected values. The algorithm is quite subtle. A common mistake in Fisher-Yates is: 

int r = rnd.Next(0, clustering.Length); // wrong! 

Although it is not obvious at all, the bad code generates an apparently random ordering of array 
values, but in fact the ordering would be strongly biased toward certain patterns. 

The second main k-means clustering initialization approach is sometimes called Forgy 
initialization. The idea is to pick a few actual data tuples to act as initial pseudo-means, and then 
assign each data tuple to the cluster corresponding to the closest pseudo-mean. In my opinion, 
research results are not conclusive about which clustering initialization approach is better under 
which circumstances. 

Updating the Centroids 

The code for method UpdateClustering begins by computing the current number of data tuples 
assigned to each cluster: 

private bool UpdateCentroids(double[][] data) 
{ 
  int[] clusterCounts = new int[numClusters]; 
  for (int i = 0; i < data.Length; ++i) 
  { 
    int clusterID = clustering[i]; 
    ++clusterCounts[clusterID]; 
  } 
. . . 

The number of tuples assigned to each cluster is needed to compute the average of each 
centroid component. Here, the clusterCounts array is declared local to method 

UpdateCentroids. An alternative is to declare clusterCounts as a class member. When writing 

object-oriented code, it is sometimes difficult to choose between using class members or local 
variables, and there are very few good, general rules-of-thumb in my opinion. 
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Next, method UpdateClustering zeroes-out the current cells in the this.centroids matrix: 

for (int k = 0; k < centroids.Length; ++k) 
  for (int j = 0; j < centroids[k].Length; ++j) 
    centroids[k][j] = 0.0; 

An alternative is to use a scratch matrix to perform the calculations. Next, the sums are 
accumulated: 

for (int i = 0; i < data.Length; ++i) 
{ 
  int clusterID = clustering[i]; 
  for (int j = 0; j < data[i].Length; ++j) 
    centroids[clusterID][j] += data[i][j]; // accumulate sum 
} 

Even though the code is short, it's a bit tricky and, for me at least, the only way to fully 
understand what is going on is to sketch a diagram of the data structures, like the one shown in 
Figure 1-e. Method UpdateCentroids concludes by dividing the accumulated sums by the 
appropriate cluster count: 

. . . 
  for (int k = 0; k < centroids.Length; ++k) 
    for (int j = 0; j < centroids[k].Length; ++j) 
      centroids[k][j] /= clusterCounts[k]; // danger? 
} // UpdateCentroids 

Notice that if any cluster count has the value 0, a fatal division by zero error will occur. Recall 
the basic k-means algorithm is: 

initialize clustering 
loop 
  update centroids 
  update clustering 
end loop 

This implies it is essential that the cluster initialization and cluster update routines ensure that 
no cluster counts ever become zero. But how can a cluster count become zero? During the k-
means processing, data tuples are reassigned to the cluster that corresponds to the closest 
centroid. Even if each cluster initially has at least one tuple assigned to it, if a data tuple is 
equally close to two different centroids, the tuple may move to either associated cluster. 

Updating the Clustering 

The definition of method UpdateClustering starts with: 

private bool UpdateClustering(double[][] data) 
{ 
  bool changed = false; 
  int[] newClustering = new int[clustering.Length]; 
  Array.Copy(clustering, newClustering, clustering.Length); 
  double[] distances = new double[numClusters]; 
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. . . 

Local variable changed holds the method return value; it's assumed to be false and will be set to 

true if any tuple changes cluster assignment. Local array newClustering holds the proposed 

new clustering. The local array named distances holds the distance from a given data tuple to 

each centroid. For example, if array distances held { 4.0, 1.5, 2.8 }, then the distance from 

some tuple to cluster 0 is 4.0, the distance from the tuple to centroid 1 is 1.5, and the distance 
from the tuple to centroid 2 is 2.8. Therefore, the tuple is closest to centroid 1 and would be 
assigned to cluster 1. 

Next, method UpdateClustering does just that with the following code: 

for (int i = 0; i < data.Length; ++i) // each tuple 
{ 
  for (int k = 0; k < numClusters; ++k) 
    distances[k] = Distance(data[i], centroids[k]); 
 
  int newClusterID = MinIndex(distances); // closest centroid 
  if (newClusterID != newClustering[i]) 
  { 
    changed = true; // note a new clustering 
    newClustering[i] = newClusterID; // accept update 
  } 
} 

The key code calls two helper methods: Distance, to compute the distance from a tuple to a 
centroid, and MinIndex, to identify the cluster ID of the smallest distance. Next, the method 
checks to see if any data tuples changed cluster assignments: 

if (changed == false) 
  return false; 

If there is no change to the clustering, then the algorithm has stabilized and UpdateClustering 
can exit with the current clustering. Another early exit occurs if the proposed new clustering 
would result in a clustering where one or more clusters have no data tuples assigned to them: 

int[] clusterCounts = new int[numClusters]; 
for (int i = 0; i < data.Length; ++i) 
{ 
  int clusterID = newClustering[i]; 
  ++clusterCounts[clusterID]; 
} 
 
for (int k = 0; k < numClusters; ++k) 
  if (clusterCounts[k] == 0) 
    return false; // bad proposed clustering 

Exiting early when the proposed new clustering would produce an empty cluster is simple and 
effective, but could lead to a mathematically non-optimal clustering result. An alternative 
approach is to move a randomly selected data item from a cluster with two or more assigned 
tuples to the empty cluster. The code to do this is surprisingly tricky. The demo program listing 
at the end of this chapter shows one possible implementation. 
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Method UpdateClustering finishes by transferring the values in the proposed new clustering, 
which is now known to be good, into the class member clustering array and returning 

Boolean true, indicating there was a change in cluster assignments: 

. . . 
  Array.Copy(newClustering, this.clustering, newClustering.Length); 
  return true; 
} // UpdateClustering 

Helper method Distance is short but significant: 

private static double Distance(double[] tuple, double[] centroid) 
{ 
  double sumSquaredDiffs = 0.0; 
  for (int j = 0; j < tuple.Length; ++j) 
    sumSquaredDiffs += (tuple[j] - centroid[j]) * (tuple[j] - centroid[j]); 
  return Math.Sqrt(sumSquaredDiffs); 
} 

Method Distance computes the Euclidean distance between a data tuple and a centroid. For 
example, suppose some tuple is (70, 80.0) and a centroid is (66, 83.0). The Euclidean distance 
is: 

distance = Sqrt( (70 - 66)2 + (80.0 - 83.0)2 ) 

               = Sqrt( 16 + 9.0 ) 
               = Sqrt( 25.0 ) 
               = 5.0 

There are several alternatives to the Euclidean distance that can be used with the k-means 
algorithm. One of the common alternatives you might want to investigate is called the cosine 
distance. 

Helper method MinIndex locates the index of the smallest value in an array. For the k-means 
algorithm, this index is equivalent to the cluster ID of the closest centroid: 

private static int MinIndex(double[] distances) 
{ 
  int indexOfMin = 0; 
  double smallDist = distances[0]; 
  for (int k = 1; k < distances.Length; ++k) 
  { 
    if (distances[k] < smallDist) 
    { 
      smallDist = distances[k]; 
      indexOfMin = k; 
    } 
  } 
  return indexOfMin; 
} 

Even a short and simple routine like method MinIndex has some implementation alternatives to 
consider. For example, if the method's static qualifier is removed, then the reference to 

distances.Length can be replaced with this.numClusters.  
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Summary 

The k-means algorithm can be used to group numeric data items. Although it is possible to 
apply k-means to categorical data by first transforming the data to a numeric form, k-means is 
not a good choice for categorical data clustering. The main problem is that k-means relies on 
the notion of distance, which makes sense for numeric data, but usually doesn't make sense for 
a categorical variable such as color that can take values like red, yellow, and pink. 

One important option not presented in the demo program is to normalize the data to be 
clustered. Normalization transforms the data so that the values in each column have roughly 
similar magnitudes. Without normalization, columns that have very large magnitude values can 
dominate columns with small magnitude values. The demo program did not need normalization 
because the magnitudes of the column values—height in inches and weight in kilograms—were 
similar. 

An algorithm that is closely related to k-means is called k-medoids. Recall that in k-means, a 
centroid for each cluster is computed, where each centroid is essentially an average data item. 
Then, each data item is assigned to the cluster associated with the closet centroid. In k-medoids 
clustering, centroids are calculated, but instead of being an average data item, each centroid is 
required to be one of the actual data items. Another closely related algorithm is called k-
medians clustering. Here, the centroid of each cluster is the median of the data items in the 
cluster, rather than the average of the data items in the cluster.  
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Chapter 1 Complete Demo Program Source Code 

using System; 
namespace ClusterNumeric 
{ 
  class ClusterNumProgram 
  { 
    static void Main(string[] args) 
    { 
      Console.WriteLine("\nBegin k-means clustering demo\n"); 
       
      double[][] rawData = new double[10][]; 
      rawData[0] = new double[] { 73, 72.6 }; 
      rawData[1] = new double[] { 61, 54.4 }; 
      rawData[2] = new double[] { 67, 99.9 }; 
      rawData[3] = new double[] { 68, 97.3 }; 
      rawData[4] = new double[] { 62, 59.0 }; 
      rawData[5] = new double[] { 75, 81.6 }; 
      rawData[6] = new double[] { 74, 77.1 }; 
      rawData[7] = new double[] { 66, 97.3 }; 
      rawData[8] = new double[] { 68, 93.3 }; 
      rawData[9] = new double[] { 61, 59.0 }; 
 
      //double[][] rawData = LoadData("..\\..\\HeightWeight.txt", 10, 2, ','); 
 
      Console.WriteLine("Raw unclustered height (in.) weight (kg.) data:\n"); 
      Console.WriteLine(" ID   Height   Weight"); 
      Console.WriteLine("---------------------"); 
      ShowData(rawData, 1, true, true); 
 
      int numClusters = 3; 
      Console.WriteLine("\nSetting numClusters to " + numClusters); 
 
      Console.WriteLine("Starting clustering using k-means algorithm"); 
      Clusterer c = new Clusterer(numClusters); 
      int[] clustering = c.Cluster(rawData); 
      Console.WriteLine("Clustering complete\n"); 
 
      Console.WriteLine("Final clustering in internal form:\n"); 
      ShowVector(clustering, true); 
 
      Console.WriteLine("Raw data by cluster:\n"); 
      ShowClustered(rawData, clustering, numClusters, 1); 
 
      Console.WriteLine("\nEnd k-means clustering demo\n"); 
      Console.ReadLine(); 
    } 
 
    static void ShowData(double[][] data, int decimals, bool indices, bool newLine) 
    { 
      for (int i = 0; i < data.Length; ++i) 
      { 
        if (indices == true) 
          Console.Write(i.ToString().PadLeft(3) + "  "); 
        for (int j = 0; j < data[i].Length; ++j) 
        { 
          double v = data[i][j]; 
          Console.Write(v.ToString("F" + decimals) + "    "); 
        } 
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        Console.WriteLine(""); 
      } 
      if (newLine == true) 
        Console.WriteLine(""); 
    }  
 
    static void ShowVector(int[] vector, bool newLine) 
    { 
      for (int i = 0; i < vector.Length; ++i) 
        Console.Write(vector[i] + " "); 
      if (newLine == true) 
        Console.WriteLine("\n"); 
    } 
 
    static void ShowClustered(double[][] data, int[] clustering, 
      int numClusters, int decimals) 
    { 
      for (int k = 0; k < numClusters; ++k) 
      { 
        Console.WriteLine("==================="); 
        for (int i = 0; i < data.Length; ++i) 
        { 
          int clusterID = clustering[i]; 
          if (clusterID != k) continue; 
          Console.Write(i.ToString().PadLeft(3) + " "); 
          for (int j = 0; j < data[i].Length; ++j) 
          { 
            double v = data[i][j]; 
            Console.Write(v.ToString("F" + decimals) + " "); 
          } 
          Console.WriteLine(""); 
        } 
        Console.WriteLine("==================="); 
      } // k 
    } 
  } // Program 
 
  public class Clusterer 
  { 
    private int numClusters; // number of clusters 
    private int[] clustering; // index = a tuple, value = cluster ID 
    private double[][] centroids; // mean (vector) of each cluster 
    private Random rnd; // for initialization 
 
    public Clusterer(int numClusters) 
    { 
      this.numClusters = numClusters; 
      this.centroids = new double[numClusters][]; 
      this.rnd = new Random(0); // arbitrary seed 
    } 
 
    public int[] Cluster(double[][] data) 
    { 
      int numTuples = data.Length; 
      int numValues = data[0].Length; 
      this.clustering = new int[numTuples]; 
 
      for (int k = 0; k < numClusters; ++k) // allocate each centroid 
        this.centroids[k] = new double[numValues]; 
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      InitRandom(data); 
 
      Console.WriteLine("\nInitial random clustering:"); 
      for (int i = 0; i < clustering.Length; ++i) 
        Console.Write(clustering[i] + " "); 
      Console.WriteLine("\n"); 
 
      bool changed = true; // change in clustering? 
      int maxCount = numTuples * 10; // sanity check 
      int ct = 0; 
      while (changed == true && ct <= maxCount) 
      { 
        ++ct; // k-means typically converges very quickly 
        UpdateCentroids(data); // no effect if fail 
        changed = UpdateClustering(data); // no effect if fail 
      } 
 
      int[] result = new int[numTuples]; 
      Array.Copy(this.clustering, result, clustering.Length); 
      return result; 
    } // Cluster 
 
    private void InitRandom(double[][] data) 
    { 
      int numTuples = data.Length; 
 
      int clusterID = 0; 
      for (int i = 0; i < numTuples; ++i) 
      { 
        clustering[i] = clusterID++; 
        if (clusterID == numClusters) 
          clusterID = 0; 
      } 
      for (int i = 0; i < numTuples; ++i) 
      { 
        int r = rnd.Next(i, clustering.Length); 
        int tmp = clustering[r]; 
        clustering[r] = clustering[i]; 
        clustering[i] = tmp; 
      } 
    } 
 
    private void UpdateCentroids(double[][] data) 
    { 
      int[] clusterCounts = new int[numClusters]; 
      for (int i = 0; i < data.Length; ++i) 
      { 
        int clusterID = clustering[i]; 
        ++clusterCounts[clusterID]; 
      } 
 
      // zero-out this.centroids so it can be used as scratch  
      for (int k = 0; k < centroids.Length; ++k) 
        for (int j = 0; j < centroids[k].Length; ++j) 
          centroids[k][j] = 0.0; 
 
      for (int i = 0; i < data.Length; ++i) 
      { 
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        int clusterID = clustering[i]; 
        for (int j = 0; j < data[i].Length; ++j) 
          centroids[clusterID][j] += data[i][j]; // accumulate sum 
      } 
 
      for (int k = 0; k < centroids.Length; ++k) 
        for (int j = 0; j < centroids[k].Length; ++j) 
          centroids[k][j] /= clusterCounts[k]; // danger? 
    } 
 
    private bool UpdateClustering(double[][] data) 
    { 
      // (re)assign each tuple to a cluster (closest centroid) 
      // returns false if no tuple assignments change OR 
      // if the reassignment would result in a clustering where 
      // one or more clusters have no tuples. 
 
      bool changed = false; // did any tuple change cluster? 
 
      int[] newClustering = new int[clustering.Length]; // proposed result 
      Array.Copy(clustering, newClustering, clustering.Length); 
 
      double[] distances = new double[numClusters]; // from tuple to centroids 
 
      for (int i = 0; i < data.Length; ++i) // walk through each tuple 
      { 
        for (int k = 0; k < numClusters; ++k) 
          distances[k] = Distance(data[i], centroids[k]); 
 
        int newClusterID = MinIndex(distances); // find closest centroid 
        if (newClusterID != newClustering[i]) 
        { 
          changed = true; // note a new clustering 
          newClustering[i] = newClusterID; // accept update 
        } 
      } 
 
      if (changed == false) 
        return false; // no change so bail 
 
      // check proposed clustering cluster counts 
      int[] clusterCounts = new int[numClusters]; 
      for (int i = 0; i < data.Length; ++i) 
      { 
        int clusterID = newClustering[i]; 
        ++clusterCounts[clusterID]; 
      } 
 
      for (int k = 0; k < numClusters; ++k) 
        if (clusterCounts[k] == 0) 
          return false; // bad clustering 
 
      // alternative: place a random data item into empty cluster 
      // for (int k = 0; k < numClusters; ++k) 
      // { 
      //   if (clusterCounts[k] == 0) // cluster k has no items 
      //   { 
      //     for (int t = 0; t < data.Length; ++t) // find a tuple to put into cluster k 
      //     { 
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      //       int cid = newClustering[t]; // cluster of t 
      //       int ct = clusterCounts[cid]; // how many items are there? 
      //       if (ct >= 2) // t is in a cluster w/ 2 or more items 
      //       { 
      //         newClustering[t] = k; // place t into cluster k 
      //         ++clusterCounts[k]; // k now has a data item 
      //         --clusterCounts[cid]; // cluster that used to have t  
      //         break; // check next cluster 
      //       } 
      //     } // t 
      //   } // cluster count of 0 
      // } // k 
 
      Array.Copy(newClustering, clustering, newClustering.Length); // update 
      return true; // good clustering and at least one change 
    } // UpdateClustering 
 
    private static double Distance(double[] tuple, double[] centroid) 
    { 
      // Euclidean distance between two vectors for UpdateClustering() 
      double sumSquaredDiffs = 0.0; 
      for (int j = 0; j < tuple.Length; ++j) 
        sumSquaredDiffs += (tuple[j] - centroid[j]) * (tuple[j] - centroid[j]); 
      return Math.Sqrt(sumSquaredDiffs); 
    } 
 
    private static int MinIndex(double[] distances) 
    { 
      // helper for UpdateClustering() to find closest centroid 
      int indexOfMin = 0; 
      double smallDist = distances[0]; 
      for (int k = 1; k < distances.Length; ++k) 
      { 
        if (distances[k] < smallDist) 
        { 
          smallDist = distances[k]; 
          indexOfMin = k; 
        } 
      } 
      return indexOfMin; 
    } 
  } // Clusterer 
} // ns 
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Chapter 2  Categorical Data Clustering 

Introduction 

Data clustering is the process of placing data items into different groups (clusters) in such a way 
that items in a particular cluster are similar to each other and items in different clusters are 
different from each other. Once clustered, the data can be examined to find useful information, 
such as determining what types of items are often purchased together so that targeted 
advertising can be aimed at customers. 

The most common clustering technique is the k-means algorithm. However, k-means is really 
only applicable when the data items are completely numeric. Clustering data sets that contain 
categorical attributes such as color, which can take on values like "red" and "blue", is a 
challenge. One of several approaches for clustering categorical data, or data sets that contain 
both numeric and categorical data, is to use a concept called category utility (CU).  

The CU value for a set of clustered data is a number like 0.3299 that is a measure of how good 
the particular clustering is. Larger values of CU are better, where the clustering is less likely 
than a random clustering of the data. There are several clustering algorithms based on CU. This 
chapter describes a technique called greedy agglomerative category utility clustering (GACUC).  

A good way to get a feel for the GACUC clustering algorithm is to examine the screenshot of the 
demo program shown in Figure 2-a. The demo program clusters a data set of seven items into 
two groups. Each data item represents a gemstone. Each item has three attributes: color (red, 
blue, green, or yellow), size (small, medium, or large), and heaviness (false or true). 

The final clustering of the seven data items is: 

Index  Color    Size     Heavy 
------------------------------- 
 0     Blue     Small    False 
 2     Red      Large    False 
 3     Red      Small    True 
 6     Red      Large    False 
------------------------------- 
 1     Green    Medium   True 
 4     Green    Medium   False 
 5     Yellow   Medium   False 
------------------------------- 
CU = 0.3299 

Even though it's surprisingly difficult to describe exactly what a good clustering is, most people 
would likely agree that the final clustering shown is the best way to place the seven data items 
into two clusters. 
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Figure 2-a: Clustering Categorical Data 

Clustering using the GACUC algorithm, like most clustering algorithms, requires the user to 
specify the number of clusters in advance. However, unlike most clustering algorithms, GACUC 
provides a metric of clustering goodness, so you can try clustering with different numbers of 
clusters and easily compare the results. 

Understanding Category Utility 

The key to implementing and customizing the GACUC clustering algorithm is understanding 
category utility. Data clustering involves solving two main problems. The first problem is defining 
exactly what makes a good clustering of data. The second problem is determining an effective 
technique to search through all possible combinations of clustering to find the best clustering. 

CU addresses the first problem. CU is a very clever metric that defines a clustering goodness. 
Small values of CU indicate poor clustering and larger values indicate better clustering. As far 
as I've been able to determine, CU was first defined by M. Gluck and J. Corter in a 1985 
research paper titled "Information, Uncertainty, and the Utility of Categories." 
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The mathematical equation for CU is a bit intimidating at first glance: 

 

The equation is simpler than it first appears. Uppercase C is an overall clustering. Lowercase m 
is the number of clusters. Lowercase k is a zero-based cluster index. Uppercase P means 
"probability of." Uppercase A means attribute (such as color). Uppercase V means attribute 
value (such as red). 

The term inside the double summation on the right represents the probability of guessing an 
attribute value purely by chance. The term inside the double summation on the left represents 
the probability of guessing an attribute value for the given clustering. So, the larger the 
difference, the less likely the clustering occurred by chance. 

Computing category utility is probably best understood by example. Suppose the data set to be 
clustered is the one shown at the top of Figure 2-a, and you want to compute the CU of this 
(non-best) clustering: 

k = 0 
------------------------ 
Red      Large    False 
Green    Medium   False 
Yellow   Medium   False 
Red      Large    False 

k = 1 
------------------------ 
Blue     Small    False 
Green    Medium   True 
Red      Small    True 

The first step is to compute the P(Ck), which are the probabilities of each cluster. For k = 0, 
because there are seven tuples in the data set and four of them are in cluster 0, P(C0) = 4/7 = 
0.5714. Similarly, P(C1) = 3/7 = 0.4286. 

The second step is to compute the double summation on the right in the CU equation, called the 
unconditional term. The computation is the sum of N terms where N is the total number of 
different attribute values in the data set, and goes like this: 

Red:    (3/7)2 = 0.1837 

Blue:   (1/7)2 = 0.0204 

Green:  (2/7)2 = 0.0816 

Yellow: (1/7)2 = 0.0204 

Small:  (2/7)2 = 0.0816 

Medium: (3/7)2 = 0.1837 

Large:  (2/7)2 = 0.0816 
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False:  (5/7)2 = 0.5102 

True:   (2/7)2 = 0.0816 
Unconditional sum = 0.1837 + 0.0204 + . . . + 0.0816 = 1.2449 (rounded) 

The third step is to compute the double summation on the left, called the conditional probability 
terms. There are m sums (where m is the number of clusters), each of which has N terms. 

For k = 0 the computation goes: 

Red:    (2/4)2 = 0.2500 

Blue:   (0/4)2 = 0.0000 

Green:  (1/4)2 = 0.0625 

Yellow: (1/4)2 = 0.0625 

Small:  (0/4)2 = 0.0000 

Medium: (2/4)2 = 0.2500 

Large:  (2/4)2 = 0.2500 

False:  (4/4)2 = 1.0000 

True:   (0/4)2 = 0.0000 

Conditional k = 0 sum = 0.2500 + 0.0000 + . . . + 0.2500 = 1.8750 

For k = 1 the computation is: 

Red:    (1/3)2 = 0.1111 

Blue:   (1/3)2 = 0.1111 

Green:  (1/3)2 = 0.1111 

Yellow: (0/3)2 = 0.0000 

Small:  (2/3)2 = 0.4444 

Medium: (1/3)2 = 0.1111 

Large:  (0/3)2 = 0.0000 

False:  (1/3)2 = 0.1111 

True:   (2/3)2 = 0.4444 

Conditional k = 1 sum = 0.1111 + 0.1111 + . . . + 0.4444 = 1.4444 (rounded) 

The last step is to combine the computed sums according to the CU equation: 

CU = 1/2 * [ 0.5714 * (1.8750 - 1.2449) + 0.4286 * (1.4444 - 1.2449) ] 

      = 0.2228 (rounded) 

Notice the CU of this non-optimal clustering, 0.2228, is less than the CU of the optimal 
clustering, 0.3299, shown in Figure 2-a. The key point is that for any clustering of a data set 
containing categorical data, it is possible to compute a value that describes how good the 
clustering is. 
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Understanding the GACUC Algorithm 

After defining a way to measure clustering goodness, the second challenging step when 
clustering categorical data is coming up with a technique to search through all possible 
clusterings. In general, it is not feasible to examine every possible clustering of a data set. For 
example, even for a data set with only 100 tuples, and m = 2 clusters, there are 2100 / 2! = 299 = 
633,825,300,114,114,700,748,351,602,688 possible clusterings. Even if you could somehow 
examine one trillion clusterings per second, it would take roughly 19 billion years to check them 
all. For comparison, the age of the universe is estimated to be about 14 billion years. 

The GACUC algorithm uses what is called a greedy agglomerative approach. The idea is to 
begin by seeding each cluster with a single data tuple. Then for each remaining tuple, determine 
which cluster, if the current tuple were added to it, would yield the best overall clustering. Then 
the tuple that gives the best CU is actually assigned to that cluster. 

Expressed in pseudo-code: 

assign just one data tuple to each cluster 
loop each remaining tuple 
  for each cluster 
    compute CU if tuple were to be assigned to cluster 
    save proposed CU 
  end for 
  determine which cluster assignment would have given best CU 
  actually assign tuple to that cluster 
end loop 

The algorithm is termed greedy because the best choice (tuple-cluster assignment in this case) 
at any given state is always selected. The algorithm is termed agglomerative because the final 
solution (overall clustering in this case) is built up one item at a time. 

This algorithm does not guarantee that the optimal clustering will be found. The final clustering 
produced by the GACUC algorithm depends on which m tuples are selected as initial seed 
tuples, and the order in which the remaining tuples are examined. But because the result of any 
clustering has a goodness metric, CU, you can use what is called “restart”. In pseudo-code: 

loop n times 
  cluster all data tuples, computing the current CU 
  if current CU > best CU 
    save current clustering 
    best CU := current CU 
  end if 
end loop 
return best clustering found 

It turns out that selecting an initial data tuple for each cluster is not trivial. One naive approach 
would be to simply select m random tuples as the seeds. However, if the seed tuples are similar 
to each other, then the resulting clustering could be poor. A better approach for selecting initial 
tuples for each cluster is to select m tuples that are as different as possible from each other. 
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There are several ways to define how a set of data tuples differ. The simplest approach is to 
count the total number of attribute values that differ when each possible pair of tuples is 
examined. This is called the Hamming distance. For example, consider these three tuples: 

[0]  Red      Large    False 
[1]  Green    Medium   False 
[2]  Yellow   Medium   False 

Looking at the color attribute, items 0 and 1 differ, 0 and 2 differ, and 1 and 2 differ. Looking at 
the size attribute, items 0 and 1 differ, and items 0 and 2 differ. Looking at the heaviness 
attribute, no pairs of tuples differ. So there are a total of 3 + 2 + 0 = 5 differences. Larger values 
for the difference metric mean more dissimilarity, which is better for choosing the initial tuples to 
be assigned to clusters. 

Now another, but relatively minor, problem arises. In most situations it isn't feasible to examine 
all possible sets of initial tuples. If there are T data tuples and m clusters, then there are 
Choose(T, m) ways to select m tuples from the set of T tuples. For example, if T = 500 and m = 
10, then there are Choose(500, 10) = 500! / 10! * 490! = 245,810,588,801,891,098,700 possible 
sets of initial tuples to examine. GACUC uses this approach to select a few random sets of 
initial tuples to examine, rather than try to examine all possible sets. 

Demo Program Overall Structure 

To create the demo, I launched Visual Studio and created a new C# console application and 
named it ClusterCategorical. After the template code loaded in the editor, I removed all using 

statements at the top of the source code, except for the references to the top-level System and 
the Collections.Generic namespaces. 

In the Solution Explorer window, I renamed file Program.cs to the more descriptive 
ClusterCatProgram.cs, and Visual Studio automatically renamed class Program to 
ClusterCatProgram. 

The overall structure of the demo program, with a few minor edits to save space, is presented in 
Listing 2-a. Note that in order to keep the size of the example code small, and the main ideas 
as clear as possible, all normal error checking is omitted. 

using System; 
using System.Collections.Generic; 
namespace ClusterCategorical 
{ 
  class ClusterCatProgram 
  { 
    static void Main(string[] args) 
    { 
      Console.WriteLine("Begin categorical data clustering demo"); 
 
      string[][] rawData = new string[7][]; 
      rawData[0] = new string[] { "Blue", "Small", "False" }; 
      rawData[1] = new string[] { "Green", "Medium", "True" }; 
      rawData[2] = new string[] { "Red", "Large", "False" }; 
      rawData[3] = new string[] { "Red", "Small", "True" }; 
      rawData[4] = new string[] { "Green", "Medium", "False" }; 
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      rawData[5] = new string[] { "Yellow", "Medium", "False" }; 
      rawData[6] = new string[] { "Red", "Large", "False" }; 
 
      Console.WriteLine("Raw unclustered data: "); 
      Console.WriteLine("    Color    Size     Heavy"); 
      Console.WriteLine("-----------------------------"); 
      ShowData(rawData); 
 
      int numClusters = 2; 
      Console.WriteLine("Setting numClusters to " + numClusters); 
      int numRestarts = 4; 
      Console.WriteLine("Setting numRestarts to " + numRestarts); 
 
      Console.WriteLine("Starting clustering using greedy CU algorithm"); 
      CatClusterer cc = new CatClusterer(numClusters, rawData); 
      double cu; 
      int[] clustering = cc.Cluster(numRestarts, out cu); 
      Console.WriteLine("Clustering complete"); 
 
      Console.WriteLine("Final clustering in internal form: "); 
      ShowVector(clustering, true); 
 
      Console.WriteLine("Final CU value = " + cu.ToString("F4")); 
 
      Console.WriteLine("Raw data grouped by cluster: "); 
      ShowClustering(numClusters, clustering, rawData); 
 
      Console.WriteLine("End categorical data clustering demo\n"); 
      Console.ReadLine(); 
    } // Main 
 
    static void ShowData(string[][] matrix) { . . }  
    static void ShowVector(int[] vector, bool newLine) { . . } 
    static void ShowClustering(int numClusters, int[] clustering, 
      string[][] rawData) { . . } 
  } // Program 
 
  public class CatClusterer { . . } 
 
} // ns 

Listing 2-a: Categorical Data Clustering Demo Program Structure 

All the clustering logic is contained in a single program-defined class named CatClusterer. All 
the program logic is contained in the Main method. The Main method begins by setting up 
seven hard-coded, color-size-heaviness data items in an array-of-arrays style matrix: 

static void Main(string[] args) 
{ 
  Console.WriteLine("\nBegin categorical data clustering demo\n"); 
  string[][] rawData = new string[7][]; 
  rawData[0] = new string[] { "Blue", "Small", "False" }; 
  rawData[1] = new string[] { "Green", "Medium", "True" }; 
  rawData[2] = new string[] { "Red", "Large", "False" }; 
  rawData[3] = new string[] { "Red", "Small", "True" }; 
  rawData[4] = new string[] { "Green", "Medium", "False" }; 
  rawData[5] = new string[] { "Yellow", "Medium", "False" }; 
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  rawData[6] = new string[] { "Red", "Large", "False" }; 
. . .  

In a non-demo scenario, you would likely have data stored in a text file and would load the data 
into memory using a helper function. After displaying the raw string data matrix using helper 
method ShowData, the demo program prepares the clustering parameters: 

int numClusters = 2; 
Console.WriteLine("\nSetting numClusters to " + numClusters); 
int numRestarts = 4; 
Console.WriteLine("Setting numRestarts to " + numRestarts); 

Variable numRestarts holds the number of times the GACUC algorithm will be called, looking 

for the clustering that gives the largest CU value. Larger values of numRestarts increase the 

chances of finding the optimal clustering, but at the expense of time. A rule of thumb that often 
works well in practice is to set numRestarts to the square root of the number of data items. 

The calling interface is simple: 

CatClusterer cc = new CatClusterer(numClusters, rawData); 
double cu; 
int[] clustering = cc.Cluster(numRestarts, out cu); 
ShowVector(clustering, true); 
Console.WriteLine("Final CU value = " + cu.ToString("F4")); 

A CatClusterer object is instantiated and its Cluster method is called. Behind the scenes, 
method Cluster calls a method ClusterOnce several (numRestarts) times, keeping track of the 

best clustering found. That best clustering, and its associated CU value, are returned. 

In the demo program, the final best clustering is stored into an array called clustering and is 

encoded as { 0, 1, 0, 0, 1, 1, 0 }. This means data tuple 0 is assigned to cluster 0, data tuple 1 is 
assigned to cluster 1, data tuple 2 is assigned to cluster 0, and so on. The final CU value of the 
best clustering found is stored into out-parameter cu and is 0.3299. 

The demo program concludes by calling helper method ShowClustering to display the raw data, 
arranged by cluster: 

. . . 
  Console.WriteLine("\nRaw data grouped by cluster:\n"); 
  ShowClustering(numClusters, clustering, rawData); 
  Console.WriteLine("\nEnd categorical data clustering demo\n"); 
  Console.ReadLine(); 
} // Main 



 

 

44 

The Key Data Structures 

The important data structures for the GACUC categorical data clustering program are illustrated 
in Figure 2-b. The array-of-arrays style matrix named rawData shows the data tuples where 

attribute values (like red) are in string form. Matrix tuplesAsInt holds the same data but where 

each attribute value has been converted to a zero-based index (like 2). In situations with very 
large data sets or limited machine memory, an alternative design is to store string-to-integer 
encoding, for example, by using a generic Dictionary collection for each attribute column. 

The GACUC algorithm computes category utility many times. It would be possible to compute 
CU from scratch each time, which would involve scanning the entire data set and counting the 
number of attribute values assigned to each cluster. But a far more efficient approach is to store 
the current count of each attribute value in a data structure, and then update the data structure 
as each data tuple is assigned to a cluster. Data structure valueCounts stores this information. 

The first index of valueCounts is an attribute, like color. The second index is an attribute value, 

like red. The third index is a cluster ID, like 0. The cell value is the count. For example, if cell 
valueCounts[0][2][0] has value 3, this means there are three data tuples assigned to cluster 

0,  where color (0) has value red (2). 

The cell in valueCounts where the third index has value numClusters holds the sum of 

assigned tuples for all clusters for the associated attribute value. For example, 
valueCounts[0][2][2] holds the number of tuples assigned where color = red. 

 

Figure 2-b: GACUC Clustering Algorithm Key Data Structures 
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The array clusterCounts holds the number of data tuples assigned to each cluster at any point 

during the algorithm, and also the total number of tuples that have been assigned. For example, 
if clusterCounts has values { 2, 3, 5 }, then two tuples have been assigned to cluster 0, three 

tuples have been assigned to cluster 1, and a total of five tuples have been assigned.  

The CatClusterer Class 

A program-defined class named CatClusterer houses the GACUC algorithm code. The structure 
of the class is presented in Listing 2-b. 

public class CatClusterer 
{ 
  private int numClusters;  
  private int[] clustering;  
  private int[][] dataAsInts;  
  private int[][][] valueCounts; 
  private int[] clusterCounts; 
  private Random rnd; 
 
  public CatClusterer(int numClusters, string[][] rawData) { . . } 
  public int[] Cluster(int numRestarts, out double catUtility) { . . } 
 
  private int[] ClusterOnce(int seed, out double catUtility) 
 
  private void MakeDataMatrix(string[][] rawData) 
  private void Allocate() { . . } 
  private void Initialize() { . . } 
  private double CategoryUtility() { . . } 
  private static int MaxIndex(double[] cus) { . . } 
  private void Shuffle(int[] indices) { . . } 
  private void Assign(int dataIndex, int clusterID) { . . } 
  private void Unassign(int dataIndex, int clusterID) { . . } 
  private int[] GetGoodIndices(int numTrials) { . . } 
  private int[] Reservoir(int n, int range) { . . }  
} 

Listing 2-b: Program-Defined CatClusterer Class 

Class CatClusterer has six private data members, which are illustrated in Figure 2-b. For most 
developers, including me, having a diagram of the key data structures is essential when writing 
machine learning code. Class member rnd is used when generating candidate sets of initial 

tuples to be assigned to clusters, and when iterating through the remaining tuples in a random 
order. 

The class exposes just two public methods: a constructor, and the clustering method. Helper 
method ClusterOnce performs one pass of the GACUC algorithm, returning the clustering found 
and the associated CU as an out-parameter. Method Cluster calls ClusterOnce numRestart 

times and returns the best clustering and CU found. 
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Helper methods MakeDataMatrix and Allocate are called by the class constructor. Method 
MakeDataMatrix accepts the matrix of raw string data to be clustered and returns the equivalent 
zero-based integer encoded matrix. An important design alternative is to preprocess the raw 
data and save the integer representation as a text file. Method Allocate allocates memory for the 
key data structures and is just a convenience to keep the constructor code tidy. 

Method ClusterOnce, which does most of the work, calls helper methods GetGoodIndices, 
Assign, Unassign, Shuffle, and MaxIndex. Method GetGoodIndices generates initial data tuples 
that are different from each other. Assign updates all data structures to assign a tuple to a 
cluster. Unassign reverses the action of Assign. Method Shuffle is used to present data tuples in 
random order. Method MaxIndex is used to find the best proposed cluster assignment. 

Private method Reservoir is a sub-helper called by helper method GetGoodIndices. Method 
Reservoir uses a mini-algorithm called reservoir sampling to find n distinct array indices. The 
CatClusterer class constructor is short: 

public CatClusterer(int numClusters, string[][] rawData) 
{ 
  this.numClusters = numClusters; 
  MakeDataMatrix(rawData);  
  Allocate();  
} 

A recurring theme when designing machine learning code is the decision of whether to pass the 
source data to the constructor or to the primary public method. Here, the data is passed to the 
constructor so that helper MakeDataMatrix can create the internal integer-form dataAsInts matrix.  

The Cluster Method 

Method Cluster is presented in Listing 2-c. Notice that the method does not accept a parameter 
representing the data to be clustered; the data is assumed to be available as a class member. 

public int[] Cluster(int numRestarts, out double catUtility) 
{ 
  int numRows = dataAsInts.Length; 
  double currCU, bestCU = 0.0; 
  int[] bestClustering = new int[numRows]; 
  for (int start = 0; start < numRestarts; ++start) 
  { 
    int seed = start; // use the start index as rnd seed 
    int[] currClustering = ClusterOnce(seed, out currCU); 
    if (currCU > bestCU) 
    { 
      bestCU = currCU; 
      Array.Copy(currClustering, bestClustering, numRows); 
    } 
  } 
  catUtility = bestCU; 
  return bestClustering; 
} 

Listing 2-c: The Cluster Method 
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Method Cluster is essentially a wrapper around method ClusterOnce. Notice that the 
randomization seed value passed to method ClusterOnce is the value of current iteration 
variable, start. This trick is a common design pattern when using a restart algorithm so that the 

worker method does not return the same result in each iteration. 

The definition of method ClusterOnce begins with: 

private int[] ClusterOnce(int seed, out double catUtility) 
{ 
  this.rnd = new Random(seed); 
  Initialize(); 
. . . 

Helper method Initialize performs three tasks. First, the values in the clustering array are all 

set to -1. This allows the algorithm to know whether a data tuple has been assigned to a cluster 
or not. Second, the values in clusterCounts are set to 0 to reset the array, which holds counts 

from any previous call to ClusterOnce. Third, the values in data structure valueCounts are set 

to 0. 

Next, method ClusterOnce selects the first tuples and assigns them to clusters: 

int numTrials = dataAsInts.Length;  
int[] goodIndexes = GetGoodIndices(numTrials); 
for (int k = 0; k < numClusters; ++k) 
  Assign(goodIndexes[k], k); 

Method GetGoodIndices returns numClusters data indices where the data tuples are different 

from each other. As explained earlier, it's usually not possible to examine all possible candidate 
sets of initial tuples, so numTrials of sets are examined. After these good indices (the data 

tuples are different) are found, their associated data tuples are assigned to clusters. 

A short example will help clarify. For the demo data, with seven data tuples and number of 
clusters set to three, method GetGoodIndices might return { 6, 0, 1 }. These are the indices of 
three data items that are very different from each other, as defined by Hamming distance: 

[6]  Red      Large    False 
[0]  Blue     Small    False 
[1]  Green    Medium   True 

These three tuples, 6, 0, and 1, are assigned to clusters 0, 1, and 2, respectively. The resulting 
clustering data member would then be: 

 1    2   -1   -1   -1   -1    0     (cluster ID) 
[0]  [1]  [2]  [3]  [4]  [5]  [6]    (tuple index) 

Next, the order of the data tuples is scrambled so that they will be presented in a random order: 

int numRows = dataAsInts.Length; 
int[] rndSequence = new int[numRows]; 
for (int i = 0; i < numRows; ++i) 
  rndSequence[i] = i; 
Shuffle(rndSequence);  
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Helper method Shuffle uses the Fisher-Yates algorithm to shuffle the data tuple indices. Use of 
the Fisher-Yates shuffle is very common in machine learning code. 

At this point, the clustering algorithm walks through each tuple. If the current tuple has not been 
assigned to a cluster (the value in clustering will be -1 if unassigned), each possible value of 

cluster ID is examined, and the one cluster ID that gave the best clustering (the largest value of 
CU) is associated with the current tuple: 

for (int t = 0; t < numRows; ++t)  // walk through each tuple 
{ 
  int idx = rndSequence[t]; // index of data tuple to process 
  if (clustering[idx] != -1) continue;  // already clustered 
 
  double[] candidateCU = new double[numClusters];  
 
  for (int k = 0; k < numClusters; ++k) // each possible cluster 
  { 
    Assign(idx, k); // tentative cluster assignment 
    candidateCU[k] = CategoryUtility(); // compute and save the CU 
    Unassign(idx, k); // undo tentative assignment 
  } 
 
  int bestK = MaxIndex(candidateCU);  // greedy. index is a cluster ID 
  Assign(idx, bestK); // now we know which cluster gave the best CU 
} // each tuple 

At this point, all data tuples have been assigned to a cluster. Method ClusterOnce computes the 
final category utility and returns the clustering as an explicit return value, and the CU as an out-
parameter: 

. . . 
  catUtility = CategoryUtility(); 
  int[] result = new int[numRows]; 
  Array.Copy(this.clustering, result, numRows); 
  return result; 
} 

The CategoryUtility Method 

The heart of the GACUC categorical data clustering algorithm is the method that computes 
category utility for a given clustering of data. Method CategoryUtility is relatively simple because 
it uses the precomputed counts stored in data structures valueCounts and clusterCounts.  

The definition begins by computing the P(Ck) terms, the probabilities of each cluster:  

private double CategoryUtility() // called by ClusterOnce 
{ 
  int numTuplesAssigned = clusterCounts[clusterCounts.Length - 1]; 
  double[] clusterProbs = new double[this.numClusters]; 
  for (int k = 0; k < numClusters; ++k) 
    clusterProbs[k] = (clusterCounts[k] * 1.0) / numTuplesAssigned; 
. . . 
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Next, the single unconditional term (the sum of the unconditional probabilities) is computed: 

double unconditional = 0.0; 
for (int i = 0; i < valueCounts.Length; ++i) 
{ 
  for (int j = 0; j < valueCounts[i].Length; ++j) 
  { 
    int sum = valueCounts[i][j][numClusters]; // last cell holds sum 
    double p = (sum * 1.0) / numTuplesAssigned; 
    unconditional += (p * p); 
  } 
} 

Next, the numCluster conditional terms (the sums of conditional probabilities) are computed: 

double[] conditionals = new double[numClusters]; 
for (int k = 0; k < numClusters; ++k) 
{ 
  for (int i = 0; i < valueCounts.Length; ++i) // each att 
  { 
    for (int j = 0; j < valueCounts[i].Length; ++j) // each value 
    { 
      double p = (valueCounts[i][j][k] * 1.0) / clusterCounts[k]; 
      conditionals[k] += (p * p); 
    } 
  } 
} 

With the pieces of the puzzle computed, method CategoryUtility combines them according to 
the mathematical definition of category utility: 

. . . 
  double summation = 0.0; 
  for (int k = 0; k < numClusters; ++k) 
    summation += clusterProbs[k] * (conditionals[k] - unconditional);  
  return summation / numClusters; 
}  

Method CategoryUtility is an internal method in the sense that it assumes all needed counts are 
available. You might want to consider writing a standalone public-scope version that creates 
and initializes local versions of valueCounts and clusterCounts, scans the clustering array 

and uses the dataAsInts matrix to populate the counts data structures, and then uses the 

counts to compute CU. 

Clustering Initialization 

The clustering initialization process is the primary customization point for the GACUC 
categorical data clustering algorithm. After initialization, GACUC clustering is deterministic, so 
the clustering result depends entirely on initialization. Initialization is implemented in method 
GetGoodIndices.  
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The method's definition begins: 

private int[] GetGoodIndices(int numTrials) 
{ 
  int numRows = dataAsInts.Length; 
  int numCols = dataAsInts[0].Length; 
  int[] result = new int[numClusters]; 
. . . 

The goal is to find the indices of data tuples that are different from each other. Because it is not 
possible in most scenarios to examine all possible sets of candidate data tuples, parameter 
numTrials holds the number of times to examine randomly selected sets. 

Even though not all possible sets of initial tuples can be examined, in general it is possible to 
compare all possible pairs of tuples within a set of candidates: 

int largestDiff = -1;  
for (int trial = 0; trial < numTrials; ++trial) 
{ 
  int[] candidates = Reservoir(numClusters, numRows); 
  int numDifferences = 0; // for these candidates 
 
  for (int i = 0; i < candidates.Length - 1; ++i) // all possible pairs 
  { 
    for (int j = i + 1; j < candidates.Length; ++j) 
    { 
      int aRow = candidates[i]; 
      int bRow = candidates[j]; 
 
      for (int col = 0; col < numCols; ++col) 
        if (dataAsInts[aRow][col] != dataAsInts[bRow][col]) 
          ++numDifferences; 
    } // j 
  } // i 
. . . 

This idea may be a bit confusing. Suppose the source data to cluster has 500 data items and 
the number of clusters is set to 3. There are Choose(500, 3) = 20,708,500 possible candidate 
sets of the initial three tuples, which is a lot. Suppose each data tuple has four attributes. To 
compare all possible pairs of any set of three tuples, there are Choose(3, 2) * 4 = 12 
comparisons required, which is quite feasible. 

In situations where the number of clusters is very large and the number of attributes is also 
large, you can modify GetGoodIndices to examine only adjacent pairs of the candidate tuples. 
The program listing at the end of this chapter provides example code for this. 

The second initialization option is to use an alternative to the Hamming distance to measure the 
difference between two data tuples. Options you may wish to explore include metrics called 
cosine similarity, Goodall similarity, and Smirnov similarity. 

Method GetGoodIndices concludes by tracking whether the current number of value differences 
is greater than the best (largest) found so far, and if so, saving the candidate set of tuple 
indices: 
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. . . 
    if (numDifferences > largestDiff) 
    { 
      largestDiff = numDifferences; 
      Array.Copy(candidates, result, numClusters); 
    } 
  } // trial 
  return result; 
} 

Reservoir Sampling 

Method GetGoodIndices calls a helper method named Reservoir. This utility method returns n 
random, distinct values from 0 to r - 1, which corresponds to n distinct array indices. Returning n 
random, distinct array indices is a very common machine learning task, and one that is 
surprisingly interesting. 

For the demo program, with seven data tuples with indices 0 through 6 (so r = 7), and the 
number of clusters set to three (so n = 3), method GetGoodIndices must generate three distinct 
values from 0 through 6. There are three common ways to generate n random distinct array 
indices: brute force, shuffle-select, and reservoir sampling.  

In pseudo-code, the brute force technique to generate n random integers between 0 and r - 1 is: 

loop t times 
  select n random integers between [0, r-1] 
  if all n integers are different 
    return the n integers 
  end if 
  // try again 
end loop 
return failure 

The problem with the brute force approach is that there is no guarantee that you'll ever get n 
different values. However, brute force is very effective when the number of integers to generate 
(n) is very, very small compared to the range (r). For example, if the goal is to select n = 3 
integers between 0 and 9999, the chances of getting a duplicate value among three random 
values is small. 

In pseudo-code, the shuffle-select technique is: 

create a scratch array of sequential integers from 0 through r-1 
shuffle the values in the array (using Fisher-Yates) 
select and return the first n values in the shuffled array 

The problem with the shuffle-select approach is that it uses extra memory for the scratch array. 
However, shuffle-select is simple and effective when n is small (say, less than 1,000). 

The demo program uses a very clever algorithm called reservoir sampling. In pseudo-code: 
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create a small result array of sequential integers from 0 through n-1 
loop for t := n to r-1 
  generate a random integer j between [0, t] 
  if j < n 
  set result[j] := t 
end loop 
return result 

Reservoir sampling is not at all obvious, and is a rare example where the actual code is 
probably easier to understand than pseudo-code. The code for method Reservoir is: 

private int[] Reservoir(int n, int range) 
{ 
  // select n random indices between [0, range) 
  int[] result = new int[n]; 
  for (int i = 0; i < n; ++i) 
    result[i] = i; 
 
  for (int t = n; t < range; ++t) 
  { 
    int j = rnd.Next(0, t + 1); 
    if (j < n) 
      result[j] = t; 
  } 
  return result;  
} 

Suppose the goal is to generate n = 3 random distinct integers between 0 and 6, inclusive. The 
result array is initialized to { 0, 1, 2 }. The first time through the algorithm's loop, t = 3. A 

random j is generated between 0 and 3 inclusive. Let’s suppose it is j = 2. Because (j = 2) < (n = 
3), result[j = 2] is set to t = 3, so the result array is now { 0, 1, 3 }. 

The second time through the loop, t = 4. Suppose generated j = 0. Because (j = 0) < (n = 3), 
result[j = 0] is set to t = 4 and result is now { 4, 1, 3 }. 

The third time through the loop, t = 5. Suppose generated j = 4. Because (j = 4) is not less than 
(n = 3), result is not changed and remains { 4, 1, 3 }. 

The fourth time through the loop, t = 6. Suppose generated j = 1. Because (j = 1) < (n = 3), 
result[j = 1] is set to 6 and result is now  { 4, 6, 3 }. The t-loop terminates and result is 

returned. 

Clustering Mixed Data 

The GACUC clustering algorithm is intended for categorical data items, but it can also be used 
to cluster data that contains a mixture of numeric and categorical data. The idea is to first 
convert numeric data into categorical data. For example, suppose the data items to be clustered 
represent people, and each item has attributes (sex, age, job). For example, the first two data 
items might be: 
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male, 28.0, engineer 
female, 52.0, accountant 

If you convert the raw age data so that ages 0 through 21 are low, ages 22 through 45 are 
medium, and ages 46 through 99 are high, the data items become: 

male, medium, engineer 
female, high, accountant 

Now the data is all categorical and the GACUC algorithm can be used. Converting numeric data 
to categorical data is called discretizing the data, or binning the data. 

With this example data, the GACUC algorithm does not take into account the fact that category 
high is closer to category medium than to category low. An unexplored option is to modify the 
GACUC algorithm to use categorical data closeness information.   
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Chapter 2 Complete Demo Program Source Code 

using System; 
using System.Collections.Generic; 
namespace ClusterCategorical 
{ 
  class ClusterCatProgram 
  { 
    static void Main(string[] args) 
    { 
      Console.WriteLine("\nBegin categorical data clustering demo\n"); 
 
      string[][] rawData = new string[7][]; 
 
      rawData[0] = new string[] { "Blue", "Small", "False" }; 
      rawData[1] = new string[] { "Green", "Medium", "True" }; 
      rawData[2] = new string[] { "Red", "Large", "False" }; 
      rawData[3] = new string[] { "Red", "Small", "True" }; 
      rawData[4] = new string[] { "Green", "Medium", "False" }; 
      rawData[5] = new string[] { "Yellow", "Medium", "False" }; 
      rawData[6] = new string[] { "Red", "Large", "False" }; 
 
      Console.WriteLine("Raw unclustered data:\n"); 
      Console.WriteLine("    Color    Size     Heavy"); 
      Console.WriteLine("-----------------------------"); 
      ShowData(rawData); 
 
      int numClusters = 2; 
      Console.WriteLine("\nSetting numClusters to " + numClusters); 
      int numRestarts = 4; 
      Console.WriteLine("Setting numRestarts to " + numRestarts); 
 
      Console.WriteLine("\nStarting clustering using greedy category utility"); 
      CatClusterer cc = new CatClusterer(numClusters, rawData); // restart version 
      double cu; 
      int[] clustering = cc.Cluster(numRestarts, out cu); 
      Console.WriteLine("Clustering complete\n"); 
 
      Console.WriteLine("Final clustering in internal form:"); 
      ShowVector(clustering, true); 
 
      Console.WriteLine("Final CU value = " + cu.ToString("F4")); 
 
      Console.WriteLine("\nRaw data grouped by cluster:\n"); 
      ShowClustering(numClusters, clustering, rawData); 
 
      Console.WriteLine("\nEnd categorical data clustering demo\n"); 
      Console.ReadLine(); 
    } // Main 
 
    static void ShowData(string[][] matrix) // for tuples 
    { 
      for (int i = 0; i < matrix.Length; ++i) 
      { 
        Console.Write("[" + i + "] "); 
        for (int j = 0; j < matrix[i].Length; ++j) 
          Console.Write(matrix[i][j].ToString().PadRight(8) + " "); 
        Console.WriteLine(""); 
      } 
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    } 
 
    public static void ShowVector(int[] vector, bool newLine) // for clustering 
    { 
      for (int i = 0; i < vector.Length; ++i) 
        Console.Write(vector[i] + " "); 
      Console.WriteLine(""); 
      if (newLine == true) 
        Console.WriteLine(""); 
    } 
 
    static void ShowClustering(int numClusters, int[] clustering, string[][] rawData) 
    { 
      Console.WriteLine("-----------------------------"); 
      for (int k = 0; k < numClusters; ++k) // display by cluster 
      { 
        for (int i = 0; i < rawData.Length; ++i) // each tuple 
        { 
          if (clustering[i] == k) // curr tuple i belongs to curr cluster k 
          { 
            Console.Write(i.ToString().PadLeft(2) + "  "); 
            for (int j = 0; j < rawData[i].Length; ++j) 
            { 
              Console.Write(rawData[i][j].ToString().PadRight(8) + " "); 
            } 
            Console.WriteLine(""); 
          } 
        } 
        Console.WriteLine("-----------------------------"); 
      } 
    } 
 
  } // Program 
 
  public class CatClusterer 
  { 
    private int numClusters; // number of clusters 
    private int[] clustering; // index = a tuple, value = cluster ID 
    private int[][] dataAsInts; // ex: red = 0, blue = 1, green = 2 
    private int[][][] valueCounts; // scratch to compute CU [att][val][count](sum) 
    private int[] clusterCounts; // number tuples assigned to each cluster (sum) 
    private Random rnd; // for several randomizations 
 
    public CatClusterer(int numClusters, string[][] rawData) 
    { 
      this.numClusters = numClusters; 
      MakeDataMatrix(rawData); // convert strings to ints into this.dataAsInts[][] 
      Allocate(); // allocate all arrays & matrices (no initialize values) 
    } 
 
    public int[] Cluster(int numRestarts, out double catUtility) 
    { 
      // restart version 
      int numRows = dataAsInts.Length; 
      double currCU, bestCU = 0.0; 
      int[] bestClustering = new int[numRows]; 
      for (int start = 0; start < numRestarts; ++start) 
      { 
        int seed = start; // use the start index as rnd seed 
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        int[] currClustering = ClusterOnce(seed, out currCU); 
        if (currCU > bestCU) 
        { 
          bestCU = currCU; 
          Array.Copy(currClustering, bestClustering, numRows); 
        } 
      } 
      catUtility = bestCU; 
      return bestClustering; 
    } // Cluster 
 
    private int[] ClusterOnce(int seed, out double catUtility) 
    { 
      this.rnd = new Random(seed); 
      Initialize(); // clustering[] to -1, all counts[] to 0 
 
      int numTrials = dataAsInts.Length; // for initial tuple assignments 
      int[] goodIndexes = GetGoodIndices(numTrials); // tuples that are dissimilar 
      for (int k = 0; k < numClusters; ++k) // assign first tuples to clusters 
        Assign(goodIndexes[k], k); 
 
      int numRows = dataAsInts.Length; 
      int[] rndSequence = new int[numRows]; 
      for (int i = 0; i < numRows; ++i) 
        rndSequence[i] = i; 
      Shuffle(rndSequence); // present tuples in random sequence 
 
      for (int t = 0; t < numRows; ++t)  // main loop. walk through each tuple 
      { 
        int idx = rndSequence[t]; // index of data tuple to process 
        if (clustering[idx] != -1) continue;  // tuple clustered by initialization 
 
        double[] candidateCU = new double[numClusters];  // candidate CU values 
 
        for (int k = 0; k < numClusters; ++k) // examine each cluster 
        { 
          Assign(idx, k); // tentative cluster assignment 
          candidateCU[k] = CategoryUtility(); // compute and save the CU 
          Unassign(idx, k); // undo tentative assignment 
        } 
 
        int bestK = MaxIndex(candidateCU);  // greedy. the index is a cluster ID 
        Assign(idx, bestK); // now we know which cluster gave the best CU 
      } // each tuple 
 
      catUtility = CategoryUtility(); 
      int[] result = new int[numRows]; 
      Array.Copy(this.clustering, result, numRows); 
      return result; 
    } // ClusterOnce 
 
    private void MakeDataMatrix(string[][] rawData) 
    { 
      int numRows = rawData.Length; 
      int numCols = rawData[0].Length; 
 
      this.dataAsInts = new int[numRows][]; // allocate all 
      for (int i = 0; i < numRows; ++i) 
        dataAsInts[i] = new int[numCols]; 
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      for (int col = 0; col < numCols; ++col)  
      { 
        int idx = 0; 
        Dictionary<string, int> dict = new Dictionary<string, int>(); 
        for (int row = 0; row < numRows; ++row) // build dict for curr col 
        { 
          string s = rawData[row][col]; 
          if (dict.ContainsKey(s) == false) 
            dict.Add(s, idx++); 
        } 
        for (int row = 0; row < numRows; ++row) // use dict 
        { 
          string s = rawData[row][col]; 
          int v = dict[s]; 
          this.dataAsInts[row][col] = v; 
        } 
      } 
      return; // explicit return style 
    } 
 
    private void Allocate() 
    { 
      // assumes dataAsInts has been created 
      // allocate this.clustering[], this.clusterCounts[], this.valueCounts[][][] 
      int numRows = dataAsInts.Length; 
      int numCols = dataAsInts[0].Length; 
 
      this.clustering = new int[numRows]; 
      this.clusterCounts = new int[numClusters + 1]; // last cell is sum 
 
      this.valueCounts = new int[numCols][][]; // 1st dim 
 
      for (int col = 0; col < numCols; ++col) // need # distinct values in each col 
      { 
        int maxVal = 0; 
        for (int i = 0; i < numRows; ++i) 
        { 
          if (dataAsInts[i][col] > maxVal) 
            maxVal = dataAsInts[i][col]; 
        } 
        this.valueCounts[col] = new int[maxVal + 1][]; // 0-based 2nd dim 
      } 
 
      for (int i = 0; i < this.valueCounts.Length; ++i) // 3rd dim 
        for (int j = 0; j < this.valueCounts[i].Length; ++j) 
          this.valueCounts[i][j] = new int[numClusters + 1]; // +1 last cell is sum 
 
      return; 
    } 
 
    private void Initialize() 
    { 
      for (int i = 0; i < clustering.Length; ++i) 
        clustering[i] = -1; 
 
      for (int i = 0; i < clusterCounts.Length; ++i) 
        clusterCounts[i] = 0; 
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      for (int i = 0; i < valueCounts.Length; ++i) 
        for (int j = 0; j < valueCounts[i].Length; ++j) 
          for (int k = 0; k < valueCounts[i][j].Length; ++k) 
            valueCounts[i][j][k] = 0; 
 
      return; 
    } 
 
    private double CategoryUtility() // called by ClusterOnce 
    { 
      // because CU is called many times use precomputed counts  
      int numTuplesAssigned = clusterCounts[clusterCounts.Length - 1]; // last cell 
 
      double[] clusterProbs = new double[this.numClusters]; 
      for (int k = 0; k < numClusters; ++k) 
        clusterProbs[k] = (clusterCounts[k] * 1.0) / numTuplesAssigned; 
 
      // single unconditional prob term 
      double unconditional = 0.0; 
      for (int i = 0; i < valueCounts.Length; ++i) 
      { 
        for (int j = 0; j < valueCounts[i].Length; ++j) 
        { 
          int sum = valueCounts[i][j][numClusters]; // last cell holds sum 
          double p = (sum * 1.0) / numTuplesAssigned; 
          unconditional += (p * p); 
        } 
      } 
 
      // conditional terms each cluster 
      double[] conditionals = new double[numClusters]; 
      for (int k = 0; k < numClusters; ++k) 
      { 
        for (int i = 0; i < valueCounts.Length; ++i) // each att 
        { 
          for (int j = 0; j < valueCounts[i].Length; ++j) // each value 
          { 
            double p = (valueCounts[i][j][k] * 1.0) / clusterCounts[k]; 
            conditionals[k] += (p * p); 
          } 
        } 
      } 
 
      // we have P(Ck), EE P(Ai=Vij|Ck)^2, EE P(Ai=Vij)^2 so we can compute CU easily 
      double summation = 0.0; 
      for (int k = 0; k < numClusters; ++k) 
        summation += clusterProbs[k] * (conditionals[k] - unconditional); 
        // E P(Ck) * [ EE P(Ai=Vij|Ck)^2 - EE P(Ai=Vij)^2 ] / n 
 
      return summation / numClusters; 
    } // CategoryUtility 
 
    private static int MaxIndex(double[] cus) 
    { 
      // helper for ClusterOnce. returns index of largest value in array 
      double bestCU = 0.0; 
      int indexOfBestCU = 0; 
      for (int k = 0; k < cus.Length; ++k) 
      { 
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        if (cus[k] > bestCU) 
        { 
          bestCU = cus[k]; 
          indexOfBestCU = k; 
        } 
      } 
      return indexOfBestCU; 
    } 
 
    private void Shuffle(int[] indices) // instance so can use class rnd 
    { 
      for (int i = 0; i < indices.Length; ++i) // Fisher-Yates shuffle 
      { 
        int ri = rnd.Next(i, indices.Length); // random index 
        int tmp = indices[i]; 
        indices[i] = indices[ri]; // swap 
        indices[ri] = tmp; 
      } 
    } 
 
    private void Assign(int dataIndex, int clusterID) 
    { 
      // assign tuple at dataIndex to clustering[] cluster, and 
      // update valueCounts[][][], clusterCounts[] 
      clustering[dataIndex] = clusterID;  // assign 
 
      for (int i = 0; i < valueCounts.Length; ++i)  // update valueCounts 
      { 
        int v = dataAsInts[dataIndex][i]; // att value 
        ++valueCounts[i][v][clusterID];   // bump count 
        ++valueCounts[i][v][numClusters]; // bump sum 
      } 
      ++clusterCounts[clusterID];  // update clusterCounts 
      ++clusterCounts[numClusters]; // last cell is sum 
    } 
 
    private void Unassign(int dataIndex, int clusterID) 
    { 
      clustering[dataIndex] = -1;  // unassign 
      for (int i = 0; i < valueCounts.Length; ++i)  // update 
      { 
        int v = dataAsInts[dataIndex][i]; 
        --valueCounts[i][v][clusterID]; 
        --valueCounts[i][v][numClusters]; // last cell is sum 
      } 
      --clusterCounts[clusterID];  // update clusterCounts 
      --clusterCounts[numClusters]; // last cell 
    } 
 
    private int[] GetGoodIndices(int numTrials) 
    { 
      // return numClusters indices of tuples that are different 
      int numRows = dataAsInts.Length; 
      int numCols = dataAsInts[0].Length; 
      int[] result = new int[numClusters]; 
 
      int largestDiff = -1; // differences for a set of numClusters tuples 
      for (int trial = 0; trial < numTrials; ++trial) 
      { 
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        int[] candidates = Reservoir(numClusters, numRows); 
        int numDifferences = 0; // for these candidates 
 
        for (int i = 0; i < candidates.Length - 1; ++i) // all possible pairs 
        { 
          for (int j = i + 1; j < candidates.Length; ++j) 
          { 
            int aRow = candidates[i]; 
            int bRow = candidates[j]; 
 
            for (int col = 0; col < numCols; ++col) 
              if (dataAsInts[aRow][col] != dataAsInts[bRow][col]) 
                ++numDifferences; 
          } 
        } 
 
        //for (int i = 0; i < candidates.Length - 1; ++i) // only adjacent pairs 
        //{ 
        //  int aRow = candidates[i]; 
        //  int bRow = candidates[i+1]; 
        //  for (int col = 0; col < numCols; ++col) 
        //    if (dataAsInts[aRow][col] != dataAsInts[bRow][col]) 
        //      ++numDifferences; 
        //} 
 
        if (numDifferences > largestDiff) 
        { 
          largestDiff = numDifferences; 
          Array.Copy(candidates, result, numClusters); 
        } 
      } // trial 
      return result; 
    } 
 
    private int[] Reservoir(int n, int range) // helper for GetGoodIndices 
    { 
      // select n random indices between [0, range) 
      int[] result = new int[n]; 
      for (int i = 0; i < n; ++i) 
        result[i] = i; 
 
      for (int t = n; t < range; ++t) 
      { 
        int j = rnd.Next(0, t + 1); 
        if (j < n) 
          result[j] = t; 
      } 
      return result;  
    } 
  } // CatClusterer 
} // ns 
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Chapter 3  Logistic Regression 
Classification 

Introduction 

Machine learning classification is the process of creating a software system that predicts which 
class a data item belongs to. For example, you might want to predict the sex (male or female) of 
a person based on features such as height, occupation, and spending behavior. Or you might 
want to predict the credit worthiness of a business (low, medium, or high) based on predictors 
such as annual revenue, current debt, and so on. In situations where the class to predict has 
just two possible values, such as sex, which can be male or female, the problem is called binary 
classification. In situations where the dependent class has three or more possible values, the 
problem is called a multiclass problem. 

Machine learning vocabulary can vary wildly, but problems where the goal is to predict some 
numeric value, as opposed to predicting a class, are often called regression problems. For 
example, you might want to predict the number of points some football team will score based on 
predictors such as opponent, home field advantage factor, average number of points scored in 
previous games, and so on. This is a regression problem. 

There are many different machine learning approaches to classification. Examples include naive 
Bayes classification, probit classification, neural network classification, and decision tree 
classification. Perhaps the most common type of classification technique is called logistic 
regression classification. In spite of the fact that logistic regression classification contains the 
word "regression", it is really a classification technique, not a regression technique. Adding to 
the confusion is the fact that logistic regression classification is usually shortened to "logistic 
regression," rather than the more descriptive "logistic classification." 

The best way to get an understanding of logistic regression classification is to examine the 
screenshot in Figure 3-a. The goal of the demo program is to predict whether a hospital patient 
will die or not based on three predictors: age, sex, and the result of a kidney test. Because the 
class to predict has just two possible values, die or survive, the demo is a binary classification 
problem. 

All classification techniques use the same general approach. They rely on a set of data with 
known input and output values to create some mathematical equation that predicts the value of 
the dependent variable based on the independent, or predictor, variables. Then, after the model 
has been created, it can be used to predict the result for new data items with unknown outputs. 

The demo starts with 30 (artificial) data items. The first two items are: 

48.00   1  4.40  0 
60.00  -1  7.89  1 
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The dependent variable to predict, Died, is in the last column and is encoded so that 0 
represents false, meaning the person survived, and 1 represents true, meaning the person died. 
For the feature variables, male is encoded as -1 and female is encoded as +1. The first line of 
data means a 48-year-old female, with a kidney test score of 4.40 survived. The second data 
item indicates that there was a 60-year-old male with a 7.89 kidney score who died. 

 

Figure 3-a: Logistic Regression Binary Classification   
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After reading the data set into memory, the demo program normalizes the independent 
variables (sometimes called x-data) of age and kidney score. This means that the values are 
scaled to have roughly the same magnitude so that ages, which have relatively large 
magnitudes like 55.0 and 68.0, won't overwhelm kidney scores that have smaller magnitudes 
like 3.85 and 6.33. After normalization, the first two data items are now: 

-0.74   1  -0.61  0 
 0.19  -1   1.36  1 

For normalized data, values less than zero indicate below average, and values greater than 
zero indicate above average. So for the first data item, the age (-0.74) is below average, and the 
kidney score (-0.61) is also below average. For the second data item, both age (+0.19) and 
kidney score (+1.36) are above average. 

After normalizing the 30-item source data set, the demo program divides the set into two parts: 
a training set, which consists of 80% of the items (24 items) and a test set, which has the 
remaining 20% (6 items). The split process is done in a way so that data items are randomly 
assigned to either the training or test sets. The training data is used to create the prediction 
model, and the test data is used after the model has been created to get an estimate of how 
accurate the model will be when presented with new data that has unknown output values. 

After the training and test sets are generated, the demo creates a prediction model using logistic 
regression classification. When using logistic regression classification (or any other kind of 
classification), there are several techniques that can be used to find values for the weights that 
define the model. The demo program uses a technique called simplex optimization. 

The result of the training process is four weights with the values { -4.41, 0.27, -0.52, and 4.51 }. 
As you'll see later, the second weight value, 0.27, is associated with the age predictor, the third 
weight value, -0.52, is associated with the sex predictor, and the last weight value, 4.51, is 
associated with the kidney score predictor. The first weight value, -4.41, is a constant needed by 
the model, but is not directly associated with any one specific predictor variable. 

After the logistic regression classification model is created, the demo program applies the model 
to the training and test data, and computes the predictive accuracy of the model. The model 
correctly predicts 95.83% of the training data (which is 23 out of 24 correct) and 83.33% of the 
test data (5 out of 6 correct). The 83.33% can be interpreted as an estimate of how accurate the 
model will be when presented with new, previously unseen data. 

Understanding Logistic Regression Classification 

Suppose some raw age, sex, and kidney data is { 50.0, -1, 6.0 }, which represents a 50-year-old 
male with a kidney score of 6.0. Here, the data is not normalized to keep the ideas clear. Now 
suppose you have four weights: b0 = -7.50, b1 = 0.11, b2 = -0.22, and b3 = 0.33. One possible 
way to create a simple linear model would be like so: 

Y = b0 + b1(50.0) + b2(-1) + b3(6.0) 
   = -7.50 + (0.11)(50.0) + (-0.22)(-1) + (0.33)(6.0) 
   = 0.20 
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In other words, you'd multiply each input x-value by an associated weight value, sum those 
products, and add a constant. Logistic regression classification extends this idea by using a 
more complex math equation that requires a pair of calculations: 

Z = b0 + b1(50.0) + b2(-1) + b3(6.0) 
Y = 1.0 / (1.0 + e-Z) 

In other words, for logistic regression classification, you form a linear combination of weights 
and inputs, call that sum Z, and then feed that result to a second equation that involves the 
math constant e. The constant e is just a number with value 2.7182818, and it appears in many 
math equations, in many different fields. 

 

Figure 3-b: The Logistic Sigmoid Function 

The function Y = 1.0 / (1.0 + e-Z) has many important uses in machine learning, and forms the 
basis of logistic regression classification. The function is called the logistic sigmoid function, or 
sometimes the log sigmoid, or just the sigmoid function for short. The logistic sigmoid function 
can accept any Z-value from negative infinity to positive infinity, but the output is always a value 

between 0 and 1, as shown in Figure 3-b. 

This may be mildly interesting, but what's the point? The idea is that if you have some input x-
values and associated weights (often called the b-values) and you combine them, and then feed 
the sum, Z, to the logistic sigmoid function, then the result will be between 0 and 1. This result is 
the predicted output value. 

An example will clarify. As before, suppose that for a hospital patient, some un-normalized age, 
sex, and kidney x-values are { 50.0, -1, 6.0 }, and suppose the b-weights are b0 = -7.50, b1 = 
0.11, b2 = -0.22, and b3 = 0.33. And assume that class 0 is "die is false" and class 1 is "die is 
true".  
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The logistic regression calculation goes like so: 

Z = b0 + b1(50.0) + b2(-1) + b3(6.0) 
   = 0.20 

Y = 1.0 / (1.0 + e-Z) 
   = 1.0 / (1.0 + e-0.20) 
   = 0.5498 

The final predicted output value (0 or 1) is the one closest to the computed output value. 
Because 0.5498 is closer to 1 than to 0, you'd conclude that dependent variable "died" is true. 
But if the y-value had been 0.3333 for example, because that value is closer to 0 than to 1, 
you'd conclude "died" is false. An equivalent, but slightly less obvious, interpretation is that the 
computed output value is the probability of the 1-class. 

Now if you have many training data items with known results, you can compute the accuracy of 
your model-weights. So the problem now becomes, how do you find the best set of weight 
values? The process of finding the set of weight values so that computed output values closely 
match the known output values for some set of training data is called training the model. There 
are roughly a dozen major techniques that can be used to train a logistic regression 
classification model. These include techniques such as simple gradient descent, back-
propagation, particle swarm optimization, and Newton-Raphson. The demo program uses a 
technique called simplex optimization. 

Demo Program Overall Structure 

To create the demo, I launched Visual Studio and selected the new C# console application 
template. The demo has no significant .NET version dependencies so any version of Visual 
Studio should work. 

After the template code loaded into the editor, I removed all using statements at the top of the 

source code, except for the single reference to the top-level System namespace. In the Solution 
Explorer window, I renamed file Program.cs to the more descriptive LogisticProgram.cs and 
Visual Studio automatically renamed class Program to LogisticProgram. 

The overall structure of the demo program, with a few minor edits to save space, is presented in 
Listing 3-a. The complete program source code is at the end of this chapter. In order to keep 
the size of the example code small, and the main ideas as clear as possible, the demo program 
omits normal error checking that would be used in production code.  

using System; 
namespace LogisticRegression 
{ 
  class LogisticProgram 
  { 
    static void Main(string[] args) 
    { 
      Console.WriteLine("Begin Logistic Regression Binary Classification demo"); 
 
      double[][] data = new double[30][]; 
      data[0] = new double[] { 48, +1, 4.40, 0 }; 
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      data[1] = new double[] { 60, -1, 7.89, 1 }; 
      . . .  
      data[29] = new double[] { 68, -1, 8.38, 1 }; 
 
      Console.WriteLine("Raw data: "); 
      ShowData(data, 5, 2, true); 
 
      Console.WriteLine("Normalizing age and kidney data"); 
      int[] columns = new int[] { 0, 2 }; 
      double[][] means = Normalize(data, columns);  
       
      Console.WriteLine("Normalized data: "); 
      ShowData(data, 5, 2, true); 
 
      Console.WriteLine("Creating train (80%) and test (20%) matrices"); 
      double[][] trainData; 
      double[][] testData; 
      MakeTrainTest(data, 0, out trainData, out testData); 
       
      Console.WriteLine("Normalized training data: "); 
      ShowData(trainData, 3, 2, true); 
 
      int numFeatures = 3; 
      LogisticClassifier lc = new LogisticClassifier(numFeatures); 
      int maxEpochs = 100; 
      double[] bestWeights = lc.Train(trainData, maxEpochs, 33); 
      
      Console.WriteLine("Best weights found:"); 
      ShowVector(bestWeights, 4, true); 
 
      double trainAccuracy = lc.Accuracy(trainData, bestWeights); 
      Console.WriteLine("Prediction accuracy on training data = " + 
        trainAccuracy.ToString("F4")); 
 
      double testAccuracy = lc.Accuracy(testData, bestWeights); 
      Console.WriteLine("Prediction accuracy on test data = " + 
        testAccuracy.ToString("F4")); 
       
      Console.WriteLine("End LR binary classification demo"); 
      Console.ReadLine(); 
    } // Main 
 
    static double[][] Normalize(double[][] rawData, 
      int[] columns) { . . } 
    static void Normalize(double[][] rawData, int[] columns, 
      double[][] means) { . . } 
    static void MakeTrainTest(double[][] allData, int seed, 
      out double[][] trainData, out double[][] testData) { . . } 
    static void ShowData(double[][] data, int numRows, 
      int decimals, bool indices) { . . } 
  } // Program 
 
  public class LogisticClassifier { . . } 
} 

Listing 3-a: Logistic Regression Classification Demo Program Structure 
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The demo program class has four static helper methods, including two different Normalize 
methods. The first Normalize method normalizes the specified columns of a matrix of data and 
returns the mean and standard deviation of each column. This will be explained later. 

The second Normalize method scales the specified columns of a data matrix using supplied 
means and standard deviations that were presumably computed earlier by the first overloaded 
Normalize method. Helper method MakeTrainTest accepts a data matrix and returns a random 
80% of the data into a training matrix (as an out-parameter) and the remaining 20% of the data 
into a test matrix (as a second out-parameter). Helper method ShowData displays the values in 
a data matrix to the console shell.  

All the classification logic is contained in a single program-defined class named 
LogisticRegression. All the program logic is contained in the Main method. The Main method 
begins by setting up 30 hard-coded data items (age, sex, kidney score, death) in an array-of-
arrays style matrix: 

static void Main(string[] args) 
{ 
  Console.WriteLine("\nBegin Logistic Regression Binary Classification demo"); 
  double[][] data = new double[30][]; 
  data[0] = new double[] { 48, +1, 4.40, 0 }; 
  data[1] = new double[] { 60, -1, 7.89, 1 }; 
. . .  

In a non-demo scenario, you would likely have data stored in a text file and would load the data 
into memory using a helper function. Next, the data is displayed: 

Console.WriteLine("\nRaw data: \n"); 
Console.WriteLine("       Age       Sex      Kidney   Died");      
Console.WriteLine("======================================="); 
ShowData(data, 5, 2, true); 

Because the data has been stored directly into a numeric matrix, there is no column header 
information available as there likely would be if the data were in a text file, so a crude, hard-
coded header is displayed directly. Next, the data set is normalized and displayed: 

Console.WriteLine("Normalizing age and kidney data"); 
int[] columns = new int[] { 0, 2 }; 
double[][] means = Normalize(data, columns); 
Console.WriteLine("Done"); 
Console.WriteLine("\nNormalized data: \n"); 
ShowData(data, 5, 2, true); 

The Normalize method will be explained in detail in the next section. Next, the data set is split 
into a training matrix and a test matrix: 

Console.WriteLine("Creating train (80%) and test (20%) matrices"); 
double[][] trainData; 
double[][] testData; 
MakeTrainTest(data, 0, out trainData, out testData); 
Console.WriteLine("Done"); 
Console.WriteLine("\nNormalized training data: \n"); 
ShowData(trainData, 3, 2, true);  
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Notice that the 80-20 percentage split is hard-coded. A more flexible alternative is to 
parameterize the split percentage.  

The logistic regression classification is encapsulated in an object that is instantiated like so: 

int numFeatures = 3; 
Console.WriteLine("Creating LR binary classifier"); 
LogisticClassifier lc = new LogisticClassifier(numFeatures); 

The program-defined LogisticClassifier object requires just a single parameter for the 
constructor: the number of features. For the demo, this is 3, for age, sex, and kidney score. 
Next, the classifier is trained: 

int maxEpochs = 100; 
Console.WriteLine("Setting maxEpochs = " + maxEpochs); 
Console.WriteLine("Starting training using simplex optimization"); 
double[] bestWeights = lc.Train(trainData, maxEpochs, 33); 
Console.WriteLine("Training complete"); 
Console.WriteLine("\nBest weights found:"); 
ShowVector(bestWeights, 4, true); 

Most classification training is iterative, and it is surprisingly difficult to know when to stop the 
training process. Here, variable maxEpochs sets a limit on the main processing loop. The value 

of 100 is artificially small to give a representative demo. The argument of 33 passed to the Train 
method is a seed for a random number generator, which is used by the method, as you'll see 
shortly. The value 33 was used only because it gave a representative demo. 

Method Main concludes by computing the model's classification accuracy: 

. . . 
  double trainAccuracy = lc.Accuracy(trainData, bestWeights); 
  Console.WriteLine("Prediction accuracy on training data = " + 
    trainAccuracy.ToString("F4")); 
 
  double testAccuracy = lc.Accuracy(testData, bestWeights); 
  Console.WriteLine("Prediction accuracy on test data = " + 
    testAccuracy.ToString("F4")); 
       
  Console.WriteLine("\nEnd LR binary classification demo\n"); 
  Console.ReadLine(); 
} 

Notice the demo does not perform any predictions using the final model. In order to make 
predictions using a model that was trained using normalized data, you must use normalized 
data. I’ll present an example of this in the next section. Additionally, the demo does not save the 
model, because that also would require normalization information. 
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Data Normalization 

In theory, when performing logistic regression classification, it's not necessary to normalize your 
data. But in practice normalization usually helps to create a good prediction model. There are 
two main types of normalization, called Gaussian and min-max. The demo uses Gaussian 
normalization, sometimes called z-score normalization (where z is not the same as the 
intermediate logistic regression Z value in the previous section). 

The motivation for data normalization is simple. You want to deal with situations where some 
data items have much larger magnitudes than others. For example, imagine data where one 
feature is a person's annual income, with values like 56,000.00, and another feature is the 
person's number of children, with values like 2.0. Without normalization, when computing the 
intermediate Z value, the contribution of the income value would be much larger than the 
contribution of the children value. 

Gaussian normalization of the values in some column of data replaces each raw value x with (x 
- m) / sd, where m is the column mean and sd is the column standard deviation. Suppose a 
feature is a person's age and there are just four values: { 25, 36, 40, 23 }. The mean (average) 
of the values is: 

m = (25 + 36 + 40 + 23) / 4 
    = 124 / 4 
    = 31.0 

The standard deviation is the square root of the average of squared differences between values 
and the mean: 

sd = sqrt( ( (25 - 31.0)2 + (36 - 31.0)2 + (40 - 31.0)2 + (23 - 31.0)2 ) / 4 ) 
     = sqrt( (36.0 + 25.0 + 81.0 + 64.0) / 4 ) 
     = sqrt(51.5) 
     = 7.176 

So the normalized value for the first age, 25, is: (25 - 31.0) / 7.176 = -0.84. After normalization, 
in general, all values will be between about -10.0 and +10.0, and in most cases will be between 
-4.0 and +4.0. Any value that is not in this range is extreme and should be investigated. 

The demo program has two Normalize methods. The first method accepts a matrix of data, and 
an array of columns to normalize. The method normalizes the matrix in place, and returns the 
mean and standard deviations of each column in a mini-matrix. The idea is that this information 
may be needed later if you want to make predictions about new data, so that the new data can 
be normalized using the same information that was used to create the prediction model. 

The code for method Normalize begins: 

static double[][] Normalize(double[][] rawData, int[] columns) 
{ 
  int numRows = rawData.Length; 
  int numCols = rawData[0].Length; 
  double[][] result = new double[2][]; 
  for (int i = 0; i < 2; ++i) 
    result[i] = new double[numCols]; 
. . .  
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The local matrix result will hold the means and standard deviations used during normalization. 

That mini-matrix has 2 rows, where the first row holds column means, and the second row holds 
column standard deviations. For example, the return result for the demo data is: 

57.50  -0.13  5.48  0.33 

12.84   0.99  1.78  0.47 

This indicates the mean of column 0 (age) is 57.50, the mean of column 1 (sex) is -0.13, the 
mean of column 2 (kidney score) is 5.48, and the mean of column 3, the dependent variable 
“died”, is 0.33. The second row values are the standard deviations, so the standard deviation of 
column 0, age, is 12.84, and so on. 

Notice that means and standard deviations are computed for all columns. An alternative is to 
compute means and standard deviations just for the specified columns, leaving 0.0 values in 
non-normalized columns. 

After setting up the return matrix, method Normalize computes and saves the mean of each 
column by adding up all column values and dividing by the number of items in the column: 

for (int c = 0; c < numCols; ++c) 
{ 
  double sum = 0.0; 
  for (int r = 0; r < numRows; ++r) 
    sum += rawData[r][c]; 
  double mean = sum / numRows; 
  result[0][c] = mean; // save 
. . . 

After means have been computed, they can be used to compute the standard deviations: 

. . . 
  double sumSquares = 0.0; 
  for (int r = 0; r < numRows; ++r) 
    sumSquares += (rawData[r][c] - mean) * (rawData[r][c] - mean); 
  double stdDev = Math.Sqrt(sumSquares / numRows); 
  result[1][c] = stdDev; 
} // for 

Method Normalize finishes by performing the Gaussian normalization on the specified columns 
and returning the means and standard deviations mini-matrix result: 

. . . 
  for (int c = 0; c < columns.Length; ++c) 
  { 
    int j = columns[c]; // column to normalize 
    double mean = result[0][j]; 
    double stdDev = result[1][j]; 
    for (int i = 0; i < numRows; ++i) 
      rawData[i][j] = (rawData[i][j] - mean) / stdDev; 
  } 
  return result; 
} 
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Notice the Normalize method modifies its input matrix. An alternative would be to return 
normalized values in a new matrix. There are two minor downsides to this approach. First, you'd 
need twice as much memory because you'd be storing two data matrices instead of just one. 
Second, you'd be returning two matrices, the normalized data and the means and standard 
deviations mini-matrix, so you'd have to resort to using out-parameters. 

Remember, the demo program does not do any predictions. Suppose you have a new patient 
whose age is 58, sex is male, and kidney score is 7.00. A prediction for this data item could look 
like: 

int[] columns = new int[] { 0, 2 }; 
double[][] means = Normalize(data, columns); 
. . . 
double[][] unknown = new double[1][]; 
unknown[0] = new double[] { 58.0, -1.0, 7.00 }; 
Normalize(unknown, columns, means); 
int died = lc.ComputeDependent(unknown[0], bestWeights); 
Console.WriteLine("Died = " + died); 

First, a one-row matrix named "unknown" is created with the relevant x-data. Notice there is no 
value for the "died" dependent variable. The x-data cannot be used as-is because the logistic 
regression model is expecting normalized data, not raw data. So the new data matrix is passed 
to the overloaded Normalize method, along with the computed means and standard deviation 
matrix, to generate normalized new data. This data is fed to a ComputeDependent method 
(which will be explained later) along with the weights found during training. 

The calling code is a bit clunky. An alternative is to wrap the code in a method named 
something like "Predict" that could be called like this: 

double[] unknown = new double[] { 58.0, -1.0, 7.00 }; 
int died = Predict(unknown, columns, means, bestWeights); 

When writing custom machine learning code, there's often a tradeoff between keeping the 
number of helper methods small (but requiring somewhat awkward calling code) and writing 
numerous easy-to-call helpers (but requiring a lot more code). 

Creating Training and Test Data 

One approach to creating a logistic regression classification model is to simply train the model 
using all available data. However, it's better in most situations to hold out some of the data so 
that the model can be evaluated to give an estimate of its accuracy when presented with new, 
previously unseen data. 

As it turns out, if you train long enough, it's almost always possible to create a model that 
predicts perfectly or nearly perfectly, but the model will typically fail miserably when presented 
with new data. This problem is called model over-fitting. Holding out some test data can help 
avoid over-fitting; even if you create a model that has 100% accuracy on training data, if the 
model has poor accuracy on the test data, it's almost certainly not a good predictive model, and 
so you need to revise the model. 



 

 

72 

Helper method MakeTrainTest is conceptually simple, but it involves some fairly subtle 
programming techniques. Imagine you have some data named “allData”, with nine rows and 
four columns, stored in an array-of-arrays style matrix, as shown in the left part of Figure 3-c. 
The first step is to make a copy of the matrix. Although you could create a replica of the source 
matrix values, a more efficient approach is to make a copy by reference. 

The reference copy is named "copy" in the figure. Note that for clarity, although the arrows in 
the cells of matrix copy are shown pointing to the arrow-cells in matrix allData, the arrows in 

copy are really pointing to the data cells in allData. For example, the arrow in copy[0][] is 

shown pointing to cell allData[0][] when in fact it should be pointing to the cell containing the 

5.3 value.  

 

Figure 3-c: Creating Training and Test Matrices by Reference 

After creating a reference copy, the next step is to scramble the order of the copy. This is shown 
on the right. After scrambling, the last step is to create training and test matrices by reference. 
In Figure 3-c, the first row of training data points to the first cell in the copy, which in turn points 
to the second row of the data. In other words, trainData[0][0] is 4.9, trainData[0][1] is 

3.7, and so on. Similarly, testData[0][0] is 6.4, testData[0][1] is 3.9 and so on. 

The definition of method MakeTrainTest begins with: 

static void MakeTrainTest(double[][] allData, int seed, 
      out double[][] trainData, out double[][] testData) 
{ 
  Random rnd = new Random(seed); 
  int totRows = allData.Length; 
  int numTrainRows = (int)(totRows * 0.80); 
  int numTestRows = totRows - numTrainRows; 
. . . 

The local Random object will be used to scramble row order. It accepts a seed parameter, so 
you can generate different results by passing in a different seed value. Here, for simplicity, the 
percentage split is hard-coded as 80-20. A more flexible approach is to pass the train 
percentage as a parameter, being careful to handle 0.80 versus 80.0 values for 80 percent. 
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The reference copy is made: 

double[][] copy = new double[allData.Length][]; 
for (int i = 0; i < copy.Length; ++i) 
  copy[i] = allData[i]; 

When working with references, even simple code can be tricky. For example, allData[0][0] is 

a cell value, like 4.5, but allData[0] is a reference to the first row of data. 

Next, the rows of the copy matrix are scrambled, also by reference: 

for (int i = 0; i < copy.Length; ++i) 
{ 
  int r = rnd.Next(i, copy.Length); 
  double[] tmp = copy[r]; 
  copy[r] = copy[i]; 
  copy[i] = tmp; 
} 

The scramble code uses the clever Fisher-Yates mini-algorithm. The net result is that the 
references in the copy matrix will be reordered randomly as suggested by the colored arrows in 
Figure 3-c. Method MakeTrainTest finishes by assigning the first 80% of scrambled rows in the 
copy matrix to the training out-matrix and the remaining rows to the test out-matrix: 

. . . 
  for (int i = 0; i < numTrainRows; ++i) 
    trainData[i] = copy[i]; 
 
  for (int i = 0; i < numTestRows; ++i) 
    testData[i] = copy[i + numTrainRows]; 
} 

Defining the LogisticClassifier Class 

The structure of the program-defined LogisticClassifier class is presented in Listing 3-b. The 
class has three data members. Variable numFeatures holds the number of predictor variables 

for a problem. Array weights holds the values used to compute outputs. 

public class LogisticClassifier 
{ 
  private int numFeatures;  
  private double[] weights; 
  private Random rnd; 
 
  public LogisticClassifier(int numFeatures) { . . } 
  public double[] Train(double[][] trainData, int maxEpochs, int seed) { . . } 
 
  private double[] ReflectedWts(double[] centroidWts, double[] worstWts) { . . } 
  private double[] ExpandedWts(double[] centroidWts, double[] worstWts) { . . } 
  private double[] ContractedWts(double[] centroidWts, double[] worstWts) { . . } 
  private double[] RandomSolutionWts() { . . } 
  private double Error(double[][] trainData, double[] weights) { . . } 
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  public double ComputeOutput(double[] dataItem, double[] weights) { . . } 
  public int ComputeDependent(double[] dataItem, double[] weights) { . . } 
  public double Accuracy(double[][] trainData, double[] weights) { . . } 
     
  private class Solution : IComparable<Solution> { . . } 
} 

Listing 3-b: The LogisticClassifier Class  

Class member rnd is a Random object that is used during the training process to generate 

random possible solutions.  

The class exposes a single constructor and four public methods. Method Train uses a technique 
called simplex optimization to find values for the weights array, so that computed output values 
closely match the known output values in the training data.  

Method ComputeOutput accepts some x-data and a set of weight values and returns a raw 
value between 0.0 and 1.0. This output is used by the training method to compute error. Method 
ComputeDependent is similar to method ComputeOutput, except that it returns a 0 or 1 result. 
This output is used to compute accuracy. Public method Accuracy accepts a set of weights and 
a matrix of either training data or test data, and returns the percentage of correct predictions. 

There are five private methods: Error, RandomSolutionWts, ReflectedWts, ExpandedWts, and 
ContractedWts. All of these methods are used by method Train when searching for the best set 
of weight values. 

The LogisticClassifier contains a nested private class named Solution. This class is used during 
training to define potential solutions, that is, potential best sets of weight values. The Solution 
class could have been defined outside the LogisticClassifier class, but you can define Solution 
as a nested class for a slightly cleaner design. 

The LogisticClassifier constructor is very simple: 

public LogisticClassifier(int numFeatures) 
{ 
  this.numFeatures = numFeatures; // number predictors 
  this.weights = new double[numFeatures + 1]; // [0] = b0 constant 
} 

If you review how the logistic regression calculation works, you'll see that the number of weight 
b-values has to be one more than the number of feature x-values because each x-value has an 
associated weight and there is one additional weight for the b0 constant. An alternative design is 
to store the b0 value in a separate variable. 

Method ComputeOutput is simple, but does have one subtle point. The method is defined: 

public double ComputeOutput(double[] dataItem, double[] weights) 
{ 
  double z = 0.0; 
  z += weights[0]; // b0 constant 
  for (int i = 0; i < weights.Length - 1; ++i) // data might include Y 
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    z += (weights[i + 1] * dataItem[i]); // skip first weight 
  return 1.0 / (1.0 + Math.Exp(-z)); 
} 

For flexibility, the method accepts an array parameter named dataItem, which can represent a 

row of training data or test data, including a Y-value in the last cell. However, the Y-value is not 
used to compute output. 

Method ComputeDependent is defined: 

public int ComputeDependent(double[] dataItem, double[] weights) 
{ 
  double sum = ComputeOutput(dataItem, weights); 
  if (sum <= 0.5) 
    return 0; 
  else 
    return 1; 
} 

Here, instead of returning a raw output value, for example 0.5678, the method returns the 
corresponding Y-value, which is either 0 or 1. The choice of <= instead of < is arbitrary, and has 

no significant effect on the operation of the classifier. A design alternative is to return a third 
value indicating the decision is too close to call: 

if (sum <= 0.45) 
  return 0; 
else if (sum >= 0.45) 
  return 1; 
else 
  return -1; // undecided 

Using this alternative would require quite a few changes to the demo program code logic. 

Error and Accuracy 

The ultimate goal of a prediction model is accuracy, which is the percentage of correct 
predictions made divided by the total number of predictions made. But when searching for the 
best set of weight values, it is better to use a measure of error rather than accuracy. Suppose 
some set of weights yields these results for five training items: 

Training Y   Computed Output   Computed Y   Result 
-------------------------------------------------- 
    0            0.4980            0        correct 
    1            0.5003            1        correct 
    0            0.9905            1        wrong 
    1            0.5009            1        correct 
    0            0.4933            0        correct 
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The model is correct on four of the five items for an accuracy of 80%. But on the four correct 
predictions, the output is just barely correct, meaning output is just barely under 0.5 when giving 
a 0 for Y and just barely above 0.5 when giving a 1 for Y. And on the third training item, which is 
incorrectly predicted, the computed output of 0.9905 is not close at all to the desired output of 
0.00. Now suppose a second set of weights yields these results: 

Training Y   Computed Output   Computed Y   Result 
-------------------------------------------------- 
    0            0.0008            0        correct 
    1            0.9875            1        correct 
    0            0.5003            1        wrong 
    1            0.9909            1        correct 
    0            0.5105            0        wrong 

These weights are correct on three out of five for an accuracy of 60%, which is less than the 
80% of the first weights, but the three correct predictions are "very correct" (computed Y is close 
to 0.00 or 1.00) and the two wrong predictions are just barely wrong. In short, when training, 
predictive accuracy is too coarse, so using error is better. 

The definition of method Accuracy begins: 

public double Accuracy(double[][] trainData, double[] weights) 
{ 
  int numCorrect = 0; 
  int numWrong = 0; 
  int yIndex = trainData[0].Length - 1; 
. . . 

Counters for the number of correct and wrong predictions are initialized, and the index in a row 
of training data where the dependent y-value is located is specified. This is the last column. The 
term trainData[0]  is the first row of data, but because all rows of data are assumed to be the 

same, any row could have been used. Each row of data in the demo has four items, so the 
value of Length - 1 will be 3, which is the index of the last column. Next, the training data is 

examined, and its accuracy is computed and then returned: 

. . . 
  for (int i = 0; i < trainData.Length; ++i) 
  { 
    double computed = ComputeDependent(trainData[i], weights); 
    double desired = trainData[i][yIndex]; // 0.0 or 1.0  
    if (computed == desired) 
      ++numCorrect; 
    else 
      ++numWrong; 
  } 
  return (numCorrect * 1.0) / (numWrong + numCorrect); 
} 
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Notice that local variable computed is declared as type double, even though method 

ComputeDependent returns an integer 0 or 1. So an implicit conversion from 0 or 1, to 0.0 or 1.0 
is performed. Therefore the condition computed == desired is comparing two values of type 

double for exact equality, which can be risky. However, the overhead of comparing the two 
values for "very-closeness" rather than exact equality is usually not worth the performance 
price: 

double closeness = 0.00000001; // often called 'epsilon' in ML 
if (Math.Abs(computed - desired) < closeness) 
  ++numCorrect; 
else 
  ++numWrong; 

The ability to control when and if to take shortcuts like this to improve performance is a major 
advantage of writing custom machine learning code, compared to using an existing system 
written by someone else where you don't have access to source code. 

Method Error is very similar to method Accuracy: 

private double Error(double[][] trainData, double[] weights) 
{ 
  int yIndex = trainData[0].Length - 1; 
  double sumSquaredError = 0.0; 
  for (int i = 0; i < trainData.Length; ++i)  
  { 
    double computed = ComputeOutput(trainData[i], weights); 
    double desired = trainData[i][yIndex]; // ex: 0.0 or 1.0 
    sumSquaredError += (computed - desired) * (computed - desired); 
  } 
  return sumSquaredError / trainData.Length; 
} 

Method Error computes the mean squared error (sometimes called mean square error), which is 
abbreviated MSE in machine learning literature. Suppose there are just three training data items 
that yield these results: 

Training Y   Computed Output 
---------------------------- 
    0            0.3000 
    1            0.8000 
    0            0.1000 

The sum of squared errors is: 

sse = (0 - 0.3000)2 + (1 - 0.8000)2 + (0 - 0.1000)2 
      = 0.09 + 0.04 + 0.01 
      = 0.14 

And the mean squared error is: 

MSE = 0.14 / 3 
         = 0.4667 



 

 

78 

A minor alternative is to use root mean squared error (RMSE), which is just the square root of 
the MSE.  

Understanding Simplex Optimization 

The most difficult technical challenge of any classification system is implementing the training 
sub-system. Recall that there are roughly a dozen major approaches with names like simple 
gradient descent, Newton-Raphson, back-propagation, and L-BFGS. All of these algorithms are 
fairly complex. The demo program uses a technique called simplex optimization. 

Loosely speaking, a simplex is a triangle. The idea behind simplex optimization is to start with 
three possible solutions. One possible solution will be "best" (meaning smallest error), one will 
be "worst" (largest error), and the third is called "other". Next, simplex optimization creates three 
new possible solutions called "expanded", "reflected", and "contracted". Each of these is 
compared against the current worst solution, and if any of the new candidates is better (smaller 
error) than the current worst, the worst solution is replaced. 

Expressed in very high-level pseudo-code, simplex optimization is: 

create best, worst, other possible solutions 
loop until done 
  create expanded, reflected, contracted candidate replacements 
  if any are better than worst, replace worst 
  else if none are better, adjust worst and other solutions 
end loop 

Simplex optimization is illustrated in Figure 3-d. In a simple case where a solution consists of 
two values, like (1.23, 4.56), you can think of a solution as a point on the (x, y) plane. The left 
side of Figure 3-d shows how three new candidate solutions are generated from the current 
best, worst, and “other” solutions. 

 

Figure 3-d: Simplex Optimization 
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First, a centroid is computed. The centroid is the average of the best and “other” solutions. In 
two dimensions, this is a point half-way between the "other" and best points. Next, an imaginary 
line is created, which starts at the worst point and extends through the centroid. Now, the 
contracted candidate is between the worst and centroid points. The reflected candidate is on the 
imaginary line, past the centroid. And the expanded candidate is past the reflected point. 

In each iteration of simplex optimization, if one of the expanded, reflected, or contracted 
candidates is better than the current worst solution, worst is replaced by that candidate. If none 
of the three candidates generated are better than the worst solution, the current worst and 
"other" solutions are moved toward the best solution to points somewhere between their current 
position and the best solution, as shown in the right-hand side of Figure 3-d. 

After each iteration, a new virtual "best-other-worst" triangle is formed, getting closer and closer 
to an optimal solution. If a snapshot of each triangle is taken, when looked at sequentially, the 
moving triangles resemble a pointy blob moving across the plane in a way that resembles a 
single-celled amoeba. For this reason, simplex optimization is sometimes called amoeba 
method optimization. 

There are many variations of simplex optimization, which vary in how far the contracted, 
reflected, and expanded candidate solutions are from the current centroid, and the order in 
which the candidate solutions are checked to see if each is better than the current worst 
solution. The most common variation of simplex optimization is called the Nelder-Mead 
algorithm. The demo program uses a simpler variation that does not have a specific name. 

In pseudo-code, the variation of simplex optimization used in the demo program is: 

randomly initialize best, worst, other solutions 
loop maxEpochs times 
  create centroid from worst and other 
  create expanded 
  if expanded is better than worst, replace worst with expanded, 
    continue loop 
  create reflected 
  if reflected is better than worst, replace worst with reflected, 
    continue loop  
  create contracted 
  if contracted is better than worst, replace worst with contracted, 
    continue loop 
  create a random solution 
  if  random solution is better than worst, replace worst, 
    continue loop 
  shrink worst and other toward best 
end loop 
return best solution found 

Simplex optimization, like all other machine learning optimization algorithms, has pros and cons. 
This is why there are so many different optimization techniques, each with dozens of variations. 
In real-life scenarios, somewhat surprisingly, no machine learning optimization technique 
guarantees you will find the optimal solution, if one exists. However, simplex optimization is 
relatively simple to implement and usually, but not always, works well in practice. 
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Training 

The goal of the logistic regression classifier training process is to find a set of weight values so 
that when presented with training data, the computed output values closely match the known 
output values. In other words, the goal of training is to minimize the error between computed 
output values and known output values. This is called a numerical optimization problem 
because you want to optimize weight values to minimize error. 

Class method Train uses a local class named Solution as part of the simplex optimization. A 
solution represents a possible solution to the problem of finding the weight values that minimize 
error. A Solution object is a collection of weights and the mean squared error associated with 
those weights. The definition is presented in Listing 3-c. 

private class Solution : IComparable<Solution> 
{ 
  public double[] weights; 
  public double error; 
 
  public Solution(int numFeatures) 
  { 
    this.weights = new double[numFeatures + 1]; 
    this.error = 0.0; 
  } 
 
  public int CompareTo(Solution other) // low-to-high error 
  { 
    if (this.error < other.error) 
      return -1; 
    else if (this.error > other.error) 
      return 1; 
    else 
      return 0; 
  } 
} 

Listing 3-c: The Solution Helper Class Definition 

The key concept of simplex optimization is that there is a best, worst, and "other" solution, so 
the three current solutions must be sorted by error, from smallest error to largest. Notice that 
helper class Solution derives from the IComparable interface. What his means is that a 
collection of Solution objects can be sorted automatically. 

Using a private nested class that derives from the IComparable interface is a rather exotic 
approach. When programming, simple is almost always better than exotic and clever (in my 
opinion, anyway), but in this situation, the simplification of the code in the Train method is worth 
the overhead of a not-very-straightforward programming technique. 

The definition of method Train begins with: 

public double[] Train(double[][] trainData, int maxEpochs, int seed) 
{ 
  this.rnd = new Random(seed); 
  Solution[] solutions = new Solution[3]; // best, worst, other 
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  for (int i = 0; i < 3; ++i) 
  { 
    solutions[i] = new Solution(numFeatures); 
    solutions[i].weights = RandomSolutionWts(); 
    solutions[i].error = Error(trainData, solutions[i].weights); 
  } 
. . .  

First, the class member Random object rnd is instantiated with a seed value. This instantiation 

is performed inside method Train rather than in the constructor, so that if you wanted, you could 
restart training several times, using a different seed value each time to get different results. 

Next, an array of Solution objects is instantiated. The whole point of going to the trouble of 
creating a Solution object is so that an array of solutions can be sorted to give the best, worst, 
and "other". The Solution object in each cell of the solutions array is instantiated by calling the 

constructor, and then a helper method named RandomSolutionWts supplies the values for the 
weights, and method Error supplies the mean squared error. 

Next, the main training loop is created: 

int best = 0;  
int other = 1; 
int worst = 2; 
int epoch = 0; 
while (epoch < maxEpochs) 
{ 
  ++epoch; 
. . . 

Local variables best, other, and worst are set up for clarity. For example, the expression 

solutions[2].weights[0] 

is the first weight value in the worst solution because Solution objects are ordered from smallest 
error to largest. Using the local variable instead, the expression would be: 

solutions[worst].weights[0] 

This is a bit more clear, and likely less error-prone. The local variable epoch is just a loop 

counter. Inside the main loop, the three possible solutions are sorted and the centroid is 
computed: 

Array.Sort(solutions); 
double[] bestWts = solutions[0].weights; // convenience only 
double[] otherWts = solutions[1].weights; 
double[] worstWts = solutions[2].weights; 
double[] centroidWts = CentroidWts(otherWts, bestWts); 

This is where the private Solution class shows its worth, by allowing the array of Solution 
objects to be sorted automatically, from smallest error to largest, simply by calling the built-in 
Array.Sort method. As before, for convenience and clarity, the weights arrays of the three 
Solution objects receive local aliases bestWts, otherWts, and worstWts. Helper method 

CentroidWts computes a centroid based on the weights in the current best and "other" solutions. 
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Next, the expanded candidate replacement for the current worst solution is created. If the 
expanded candidate is better than the worst solution, the worst solution is replaced: 

double[] expandedWts = ExpandedWts(centroidWts, worstWts); 
double expandedError = Error(trainData, expandedWts); 
if (expandedError < solutions[worst].error) 
{ 
  Array.Copy(expandedWts, worstWts, numFeatures + 1); 
  solutions[worst].error = expandedError; 
  continue; 
} 

Replacing the current worst solution requires two steps. First, the weights have to be copied 
from the candidate into worst, and then the error term has to be copied in. This is allowed 
because Solution class members weights and error were declared with public scope. 

As a very general rule of thumb, using the continue statement inside a while-loop can be a bit 

tricky, because many statements in the loop after the continue statement are skipped. In this 

situation, however, using the continue statement leads to cleaner and more easily modified 

code than the alternative of a deeply nested if-else-if structure. 

If the expanded candidate is not better than the worst solution, the reflected candidate is 
created and examined: 

double[] reflectedWts = ReflectedWts(centroidWts, worstWts); 
double reflectedError = Error(trainData, reflectedWts); 
if (reflectedError < solutions[worst].error) 
{ 
  Array.Copy(reflectedWts, worstWts, numFeatures + 1); 
  solutions[worst].error = reflectedError; 
  continue; 
} 

If the reflected candidate is not better than the worst solution, the contracted candidate is 
created and examined: 

double[] contractedWts = ContractedWts(centroidWts, worstWts); 
double contractedError = Error(trainData, contractedWts); 
if (contractedError < solutions[worst].error)  
{ 
  Array.Copy(contractedWts, worstWts, numFeatures + 1); 
  solutions[worst].error = contractedError; 
  continue; 
} 

At this point, none of the three primary candidate solutions are better than the worst solution, so 
a random solution is tried: 

double[] randomSolWts = RandomSolutionWts(); 
double randomSolError = Error(trainData, randomSolWts); 
if (randomSolError < solutions[worst].error) 
{ 
  Array.Copy(randomSolWts, worstWts, numFeatures + 1); 
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  solutions[worst].error = randomSolError; 
  continue; 
} 

Generating a candidate solution and computing its associated mean squared error is a relatively 
expensive operation because every training data item must be processed. So an alternative to 
consider is to attempt a random solution every so often, say, just once for every 100 iterations: 

if (epoch % 100 == 0) 
{ 
  // create and examine a random solution 
}   

Now at this point, no viable replacement for the worst solution was found, so the simplex shrinks 
in on itself by moving the worst and "other" solutions toward the best solution: 

. . . 
  for (int j = 0; j < numFeatures + 1; ++j) 
    worstWts[j] = (worstWts[j] + bestWts[j]) / 2.0; 
  solutions[worst].error = Error(trainData, solutions[worst].weights); 
 
  for (int j = 0; j < numFeatures + 1; ++j) 
    otherWts[j] = (otherWts[j] + bestWts[j]) / 2.0; 
  solutions[other].error = Error(trainData, otherWts); 
 
} // while 

Here, the current worst and "other" solutions move halfway toward the best solution, as 
indicated by the 2.0 constants in the code. The definition of method Train concludes with: 

. . . 
  Array.Copy(solutions[best].weights, this.weights, this.numFeatures + 1); 
  return this.weights; 
} 

The weights in the best Solution object are copied into class member array weights. A 

reference to the class member weights is returned so that the best weights can be used by 

other methods, such as ComputeDependent in particular, to make predictions on new, 
previously unseen data. An alternative to returning the best weights by reference is to make a 
new array, copy the values from the best solution into that array, and return by value.  

Helper method CentroidWts computes the centroid used by simplex optimization. Recall the 
centroid is an average of the current best and "other" solutions:  

private double[] CentroidWts(double[] otherWts, double[] bestWts) 
{ 
  double[] result = new double[this.numFeatures + 1]; 
  for (int i = 0; i < result.Length; ++i) 
    result[i] = (otherWts[i] + bestWts[i]) / 2.0; 
  return result; 
} 
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Helper method ExpandedWts is defined:  

private double[] ExpandedWts(double[] centroidWts, double[] worstWts) 
{ 
  double gamma = 2.0; 
  double[] result = new double[this.numFeatures + 1]; 
  for (int i = 0; i < result.Length; ++i) 
    result[i] = centroidWts[i] + (gamma * (centroidWts[i] - worstWts[i])); 
  return result; 
} 

Here, local variable gamma controls how far the expanded candidate is from the centroid. Larger 

values of gamma tend to produce larger changes in the solutions in the beginning of processing 

at the expense of unneeded calculations later in the processing. Smaller values of gamma tend 

to produce smaller changes initially, but fewer calculations later. 

Helper methods ReflectedWts and ContractedWts use the exact same pattern as method 
ExpandedWts:  

private double[] ReflectedWts(double[] centroidWts, double[] worstWts) 
{ 
  double alpha = 1.0; 
  double[] result = new double[this.numFeatures + 1]; 
  for (int i = 0; i < result.Length; ++i) 
    result[i] = centroidWts[i] + (alpha * (centroidWts[i] - worstWts[i])); 
  return result; 
} 
 
private double[] ContractedWts(double[] centroidWts, double[] worstWts) 
{ 
  double rho = -0.5; 
  double[] result = new double[this.numFeatures + 1]; 
  for (int i = 0; i < result.Length; ++i) 
    result[i] = centroidWts[i] + (rho * (centroidWts[i] - worstWts[i])); 
  return result; 
} 

In method ReflectedWts, with an alpha value of 1.0, multiplying by alpha obviously has no 

effect, so in a production scenario you could just eliminate alpha altogether. There are several 

ways to improve the efficiency of these three helper methods, though at the minor expense of 
some loss of clarity. For example, notice that each method computes the quantity 
centroidWts[i] - worstWts[i]. This common value could be computed just once and then 

passed to each method along the lines of: 

for (int i = 0; i < numFeatures + 1; ++i) 
  delta[i] = centroidWts[i] - worstWts[i]; 
 
double[] expandedWts = ExpandedWts(delta); 
. . . 
double[] reflectedWts = ReflectedWts(delta); 
// etc. 
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Helper method RandomSolutionWts is used to initialize the three current solutions (best, worst, 
other), and is also used, optionally, to probe when no replacement candidate (expanded, 
reflected, contracted) is better than the current worst solution. The method is defined: 

private double[] RandomSolutionWts() 
{ 
  double[] result = new double[this.numFeatures + 1]; 
  double lo = -10.0; 
  double hi = 10.0; 
  for (int i = 0; i < result.Length; ++i) 
    result[i] = (hi - lo) * rnd.NextDouble() + lo; 
  return result; 
} 

The method returns an array of weights where each value is a random number between -10.0 
and +10.0, for example { 3.33, -0.17, 7.92, -5.05 }. Because it is assumed that all input x-values 
have been normalized, the majority of x-values will be between -10.0 and +10.0, so this range is 
also used for the weight values. Because these two values are hard-coded, in method 
RandomSolutionWts you could replace term (hi - lo) with the constant 20.0, and replace 

variable lo with -10.0. If your x-values are not normalized, it is quite possible that constraining 

weight values to the interval [-10.0, +10.0] could lead to a poor model when the magnitudes of 
different features vary greatly. 

The Train method iterates a fixed number of times specified by the maxEpochs variable: 

int epoch = 0; 
while (epoch < maxEpochs) 
{ 
  ++epoch; 
  // search for best weights 
} 

An important, recurring theme in most machine learning training algorithms is that there are 
many ways to control when the main training loop terminates. For simplex optimization, there 
are two important options to consider. First, you may want to exit early if the Euclidean distance 
(difference) between the current best and worst solutions reaches some very low value 
indicating the simplex has collapsed on itself. Second, you may want to exit only when the mean 
squared error drops below some acceptable level, indicating your model is likely good enough.  

Other Scenarios 

This chapter explains binary logistic regression classification, where the dependent variable can 
take one of just two possible values. There are several techniques you can use to extend 
logistic regression to situations where the dependent variable can take one of three or more 
values, for example, predicting a person's political affiliation of Democrat, Republican, or 
Independent. The simplest approach is called one-versus-all. You would run logistic regression 
for Democrat versus "others”, run a second time with Republican versus "others", and run a 
third time with Independent versus "others". That said, logistic regression classification is most 
often used for binary problems.  
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Logistic regression classification can handle problems where the predictor variables are 
numeric, such as the kidney score feature in the demo program, or categorical, such as the sex 
feature in the demo. For a categorical x-variable with two possible values, such as sex, the 
values are encoded as -1 or +1. For x-variables that have three or more possible values, the 
trick is to use a technique called 1-of-(N-1) encoding. For example, if three predictor values are 
"small","medium", and "large", the values would be encoded as (1, 0), (0, 1), and (-1, -1), 
respectively.  
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Chapter 3 Complete Demo Program Source Code 

using System; 
namespace LogisticRegression 
{ 
  class LogisticProgram 
  { 
    static void Main(string[] args) 
    { 
      Console.WriteLine("\nBegin Logistic Regression Binary Classification demo"); 
      Console.WriteLine("Goal is to predict death (0 = false, 1 = true)"); 
 
      double[][] data = new double[30][]; 
      data[0] = new double[] { 48, +1, 4.40, 0 }; 
      data[1] = new double[] { 60, -1, 7.89, 1 }; 
      data[2] = new double[] { 51, -1, 3.48, 0 }; 
      data[3] = new double[] { 66, -1, 8.41, 1 }; 
      data[4] = new double[] { 40, +1, 3.05, 0 }; 
      data[5] = new double[] { 44, +1, 4.56, 0 }; 
      data[6] = new double[] { 80, -1, 6.91, 1 }; 
      data[7] = new double[] { 52, -1, 5.69, 0 }; 
      data[8] = new double[] { 56, -1, 4.01, 0 }; 
      data[9] = new double[] { 55, -1, 4.48, 0 }; 
      data[10] = new double[] { 72, +1, 5.97, 0 }; 
      data[11] = new double[] { 57, -1, 6.71, 1 }; 
      data[12] = new double[] { 50, -1, 6.40, 0 }; 
      data[13] = new double[] { 80, -1, 6.67, 1 }; 
      data[14] = new double[] { 69, +1, 5.79, 0 }; 
      data[15] = new double[] { 39, -1, 5.42, 0 }; 
      data[16] = new double[] { 68, -1, 7.61, 1 }; 
      data[17] = new double[] { 47, +1, 3.24, 0 }; 
      data[18] = new double[] { 45, +1, 4.29, 0 }; 
      data[19] = new double[] { 79, +1, 7.44, 1 }; 
      data[20] = new double[] { 44, -1, 2.55, 0 }; 
      data[21] = new double[] { 52, +1, 3.71, 0 }; 
      data[22] = new double[] { 80, +1, 7.56, 1 }; 
      data[23] = new double[] { 76, -1, 7.80, 1 }; 
      data[24] = new double[] { 51, -1, 5.94, 0 }; 
      data[25] = new double[] { 46, +1, 5.52, 0 }; 
      data[26] = new double[] { 48, -1, 3.25, 0 }; 
      data[27] = new double[] { 58, +1, 4.71, 0 }; 
      data[28] = new double[] { 44, +1, 2.52, 0 }; 
      data[29] = new double[] { 68, -1, 8.38, 1 }; 
 
      Console.WriteLine("\nRaw data: \n"); 
      Console.WriteLine("       Age       Sex      Kidney   Died"); 
      Console.WriteLine("======================================="); 
      ShowData(data, 5, 2, true); 
 
      Console.WriteLine("Normalizing age and kidney data"); 
      int[] columns = new int[] { 0, 2 }; 
      double[][] means = Normalize(data, columns); // normalize, save means and stdDevs 
      Console.WriteLine("Done"); 
 
      Console.WriteLine("\nNormalized data: \n"); 
      ShowData(data, 5, 2, true); 
 
      Console.WriteLine("Creating train (80%) and test (20%) matrices"); 
      double[][] trainData; 
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      double[][] testData; 
      MakeTrainTest(data, 0, out trainData, out testData); 
      Console.WriteLine("Done"); 
 
      Console.WriteLine("\nNormalized training data: \n"); 
      ShowData(trainData, 3, 2, true); 
 
      //Console.WriteLine("\nFirst 3 rows and last row of normalized test data: \n"); 
      //ShowData(testData, 3, 2, true); 
 
      int numFeatures = 3; // number of x-values (age, sex, kidney) 
      Console.WriteLine("Creating LR binary classifier"); 
      LogisticClassifier lc = new LogisticClassifier(numFeatures); 
       
      int maxEpochs = 100; // gives a representative demo 
      Console.WriteLine("Setting maxEpochs = " + maxEpochs); 
      Console.WriteLine("Starting training using simplex optimization"); 
      double[] bestWeights = lc.Train(trainData, maxEpochs, 33); // 33 = 'nice' demo 
      Console.WriteLine("Training complete"); 
 
      Console.WriteLine("\nBest weights found:"); 
      ShowVector(bestWeights, 4, true); 
 
      double trainAccuracy = lc.Accuracy(trainData, bestWeights); 
      Console.WriteLine("Prediction accuracy on training data = " + 
        trainAccuracy.ToString("F4")); 
 
      double testAccuracy = lc.Accuracy(testData, bestWeights); 
      Console.WriteLine("Prediction accuracy on test data = " + 
        testAccuracy.ToString("F4")); 
 
      //double[][] unknown = new double[1][]; 
      //unknown[0] = new double[] { 58.0, -1.0, 7.00 }; 
      //Normalize(unknown, columns, means); 
      //int died = lc.ComputeDependent(unknown[0], bestWeights); 
      //Console.WriteLine("Died = " + died); 
       
      Console.WriteLine("\nEnd LR binary classification demo\n"); 
      Console.ReadLine(); 
    } // Main 
 
    static double[][] Normalize(double[][] rawData, int[] columns) 
    { 
      // return means and sdtDevs of all columns for later use 
      int numRows = rawData.Length; 
      int numCols = rawData[0].Length; 
 
      double[][] result = new double[2][]; // [0] = mean, [1] = stdDev 
      for (int i = 0; i < 2; ++i) 
        result[i] = new double[numCols]; 
 
      for (int c = 0; c < numCols; ++c) 
      { 
        // means of all cols 
        double sum = 0.0; 
        for (int r = 0; r < numRows; ++r) 
          sum += rawData[r][c]; 
        double mean = sum / numRows; 
        result[0][c] = mean; // save 
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        // stdDevs of all cols 
        double sumSquares = 0.0; 
        for (int r = 0; r < numRows; ++r) 
          sumSquares += (rawData[r][c] - mean) * (rawData[r][c] - mean); 
        double stdDev = Math.Sqrt(sumSquares / numRows); 
        result[1][c] = stdDev; 
      } 
 
      // normalize 
      for (int c = 0; c < columns.Length; ++c) 
      { 
        int j = columns[c]; // column to normalize 
        double mean = result[0][j]; // mean of the col 
        double stdDev = result[1][j]; 
        for (int i = 0; i < numRows; ++i) 
          rawData[i][j] = (rawData[i][j] - mean) / stdDev; 
      } 
      return result; 
    } 
 
    static void Normalize(double[][] rawData, int[] columns, double[][] means) 
    { 
      // normalize columns using supplied means and standard devs 
      int numRows = rawData.Length; 
      for (int c = 0; c < columns.Length; ++c) // each specified col 
      { 
        int j = columns[c]; // column to normalize 
        double mean = means[0][j]; 
        double stdDev = means[1][j]; 
        for (int i = 0; i < numRows; ++i) // each row 
          rawData[i][j] = (rawData[i][j] - mean) / stdDev; 
      } 
    } 
 
    static void MakeTrainTest(double[][] allData, int seed, 
      out double[][] trainData, out double[][] testData) 
    { 
      Random rnd = new Random(seed); 
      int totRows = allData.Length; 
      int numTrainRows = (int)(totRows * 0.80); // 80% hard-coded 
      int numTestRows = totRows - numTrainRows; 
      trainData = new double[numTrainRows][]; 
      testData = new double[numTestRows][]; 
 
      double[][] copy = new double[allData.Length][]; // ref copy of all data 
      for (int i = 0; i < copy.Length; ++i) 
        copy[i] = allData[i]; 
 
      for (int i = 0; i < copy.Length; ++i) // scramble order 
      { 
        int r = rnd.Next(i, copy.Length); // use Fisher-Yates 
        double[] tmp = copy[r]; 
        copy[r] = copy[i]; 
        copy[i] = tmp; 
      } 
      for (int i = 0; i < numTrainRows; ++i) 
        trainData[i] = copy[i]; 
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      for (int i = 0; i < numTestRows; ++i) 
        testData[i] = copy[i + numTrainRows]; 
    } // MakeTrainTest 
 
 
    static void ShowData(double[][] data, int numRows, 
      int decimals, bool indices) 
    { 
      for (int i = 0; i < numRows; ++i) 
      { 
        if (indices == true) 
          Console.Write("[" + i.ToString().PadLeft(2) + "]  "); 
        for (int j = 0; j < data[i].Length; ++j) 
        { 
          double v = data[i][j]; 
          if (v >= 0.0) 
            Console.Write(" "); // '+' 
          Console.Write(v.ToString("F" + decimals) + "    "); 
        } 
        Console.WriteLine(""); 
      } 
      Console.WriteLine(". . ."); 
      int lastRow = data.Length - 1; 
      if (indices == true) 
        Console.Write("[" + lastRow.ToString().PadLeft(2) + "]  "); 
      for (int j = 0; j < data[lastRow].Length; ++j) 
      { 
        double v = data[lastRow][j]; 
        if (v >= 0.0) 
          Console.Write(" "); // '+' 
        Console.Write(v.ToString("F" + decimals) + "    "); 
      } 
      Console.WriteLine("\n"); 
    } 
 
    static void ShowVector(double[] vector, int decimals, bool newLine) 
    { 
      for (int i = 0; i < vector.Length; ++i) 
        Console.Write(vector[i].ToString("F" + decimals) + " "); 
      Console.WriteLine(""); 
      if (newLine == true) 
        Console.WriteLine(""); 
    } 
  } // Program 
 
  public class LogisticClassifier 
  { 
    private int numFeatures; // number of independent variables aka features 
    private double[] weights; // b0 = constant 
    private Random rnd; 
 
    public LogisticClassifier(int numFeatures) 
    { 
      this.numFeatures = numFeatures; // number of features/predictors 
      this.weights = new double[numFeatures + 1]; // [0] = b0 constant 
    } 
 
    public double[] Train(double[][] trainData, int maxEpochs, int seed) 
    { 
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      // sort 3 solutions (small error to large) 
      // compute centroid  
      // if expanded is better than worst replace 
      // else if reflected is better than worst, replace 
      // else if contracted is better than worst, replace 
      // else if random is better than worst, replace 
      // else shrink 
 
      this.rnd = new Random(seed); // so we can implement restart if wanted 
 
      Solution[] solutions = new Solution[3]; // best, worst, other 
 
      // initialize to random values 
      for (int i = 0; i < 3; ++i) 
      { 
        solutions[i] = new Solution(numFeatures); 
        solutions[i].weights = RandomSolutionWts(); 
        solutions[i].error = Error(trainData, solutions[i].weights); 
      } 
 
      int best = 0; // for solutions[idx].error 
      int other = 1; 
      int worst = 2; 
 
      int epoch = 0; 
      while (epoch < maxEpochs) 
      { 
        ++epoch; 
        Array.Sort(solutions); // [0] = best, [1] = other, [2] = worst 
        double[] bestWts = solutions[0].weights; // convenience only 
        double[] otherWts = solutions[1].weights; 
        double[] worstWts = solutions[2].weights; 
 
        double[] centroidWts = CentroidWts(otherWts, bestWts); // an average 
 
        double[] expandedWts = ExpandedWts(centroidWts, worstWts); 
        double expandedError = Error(trainData, expandedWts); 
        if (expandedError < solutions[worst].error) // expanded better than worst? 
        { 
          Array.Copy(expandedWts, worstWts, numFeatures + 1); // replace worst 
          solutions[worst].error = expandedError; 
          continue; 
        } 
 
        double[] reflectedWts = ReflectedWts(centroidWts, worstWts); 
        double reflectedError = Error(trainData, reflectedWts); 
        if (reflectedError < solutions[worst].error) // relected better than worst? 
        { 
          Array.Copy(reflectedWts, worstWts, numFeatures + 1); 
          solutions[worst].error = reflectedError; 
          continue; 
        } 
 
        double[] contractedWts = ContractedWts(centroidWts, worstWts); 
        double contractedError = Error(trainData, contractedWts); 
        if (contractedError < solutions[worst].error) // contracted better than worst? 
        { 
          Array.Copy(contractedWts, worstWts, numFeatures + 1); 
          solutions[worst].error = contractedError; 
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          continue; 
        } 
 
        double[] randomSolWts = RandomSolutionWts(); 
        double randomSolError = Error(trainData, randomSolWts); 
        if (randomSolError < solutions[worst].error) 
        { 
          Array.Copy(randomSolWts, worstWts, numFeatures + 1); 
          solutions[worst].error = randomSolError; 
          continue; 
        } 
 
        // couldn't find a replacement for worst so shrink 
        // worst -> towards best 
        for (int j = 0; j < numFeatures + 1; ++j) 
          worstWts[j] = (worstWts[j] + bestWts[j]) / 2.0; 
        solutions[worst].error = Error(trainData, worstWts); 
 
        // 'other' -> towards best 
        for (int j = 0; j < numFeatures + 1; ++j) 
          otherWts[j] = (otherWts[j] + bestWts[j]) / 2.0; 
        solutions[other].error = Error(trainData, otherWts); 
 
      } // while 
       
      // copy best weights found, return by reference 
      Array.Copy(solutions[best].weights, this.weights, this.numFeatures + 1); 
      return this.weights; 
    } 
 
    private double[] CentroidWts(double[] otherWts, double[] bestWts) 
    { 
      double[] result = new double[this.numFeatures + 1]; 
      for (int i = 0; i < result.Length; ++i) 
        result[i] = (otherWts[i] + bestWts[i]) / 2.0; 
      return result; 
    } 
 
    private double[] ExpandedWts(double[] centroidWts, double[] worstWts) 
    { 
      double gamma = 2.0; // how far from centroid 
      double[] result = new double[this.numFeatures + 1]; 
      for (int i = 0; i < result.Length; ++i) 
        result[i] = centroidWts[i] + (gamma * (centroidWts[i] - worstWts[i])); 
      return result; 
    } 
 
    private double[] ReflectedWts(double[] centroidWts, double[] worstWts) 
    { 
      double alpha = 1.0; // how far from centroid 
      double[] result = new double[this.numFeatures + 1]; 
      for (int i = 0; i < result.Length; ++i) 
        result[i] = centroidWts[i] + (alpha * (centroidWts[i] - worstWts[i])); 
      return result; 
    } 
 
    private double[] ContractedWts(double[] centroidWts, double[] worstWts) 
    { 
      double rho = -0.5; 
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      double[] result = new double[this.numFeatures + 1]; 
      for (int i = 0; i < result.Length; ++i) 
        result[i] = centroidWts[i] + (rho * (centroidWts[i] - worstWts[i])); 
      return result; 
    } 
 
    private double[] RandomSolutionWts() 
    { 
      double[] result = new double[this.numFeatures + 1]; 
      double lo = -10.0; 
      double hi = 10.0; 
      for (int i = 0; i < result.Length; ++i) 
        result[i] = (hi - lo) * rnd.NextDouble() + lo; 
      return result; 
    } 
 
    private double Error(double[][] trainData, double[] weights) 
    { 
      // mean squared error using supplied weights 
      int yIndex = trainData[0].Length - 1; // y-value (0/1) is last column 
      double sumSquaredError = 0.0; 
      for (int i = 0; i < trainData.Length; ++i) // each data 
      { 
        double computed = ComputeOutput(trainData[i], weights); 
        double desired = trainData[i][yIndex]; // ex: 0.0 or 1.0 
        sumSquaredError += (computed - desired) * (computed - desired); 
      } 
      return sumSquaredError / trainData.Length; 
    } 
 
    public double ComputeOutput(double[] dataItem, double[] weights) 
    { 
      double z = 0.0; 
 
      z += weights[0]; // the b0 constant 
      for (int i = 0; i < weights.Length - 1; ++i) // data might include Y 
        z += (weights[i + 1] * dataItem[i]); // skip first weight 
      return 1.0 / (1.0 + Math.Exp(-z)); 
    } 
 
    public int ComputeDependent(double[] dataItem, double[] weights) 
    { 
      double sum = ComputeOutput(dataItem, weights); 
 
      if (sum <= 0.5) 
        return 0; 
      else 
        return 1; 
    } 
 
    public double Accuracy(double[][] trainData, double[] weights) 
    { 
      int numCorrect = 0; 
      int numWrong = 0; 
      int yIndex = trainData[0].Length - 1; 
      for (int i = 0; i < trainData.Length; ++i) 
      { 
        double computed = ComputeDependent(trainData[i], weights); // implicit cast 
        double desired = trainData[i][yIndex]; // 0.0 or 1.0 
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        if (computed == desired) // risky? 
          ++numCorrect; 
        else 
          ++numWrong; 
 
        //double closeness = 0.00000001; 
        //if (Math.Abs(computed - desired) < closeness) 
        //  ++numCorrect; 
        //else 
        //  ++numWrong; 
      } 
      return (numCorrect * 1.0) / (numWrong + numCorrect); 
    } 
 
    private class Solution : IComparable<Solution> 
    { 
      public double[] weights; // a potential solution  
      public double error;     // MSE of weights 
 
      public Solution(int numFeatures) 
      { 
        this.weights = new double[numFeatures + 1]; // problem dim + constant 
        this.error = 0.0; 
      } 
 
      public int CompareTo(Solution other) // low-to-high error 
      { 
        if (this.error < other.error) 
          return -1; 
        else if (this.error > other.error) 
          return 1; 
        else 
          return 0; 
      } 
    } // Solution    
 
  } // LogisticClassifier 
} // ns 
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Chapter 4  Naive Bayes Classification 

Introduction 

Most machine learning classification techniques work strictly with numeric data. For these 
techniques, any non-numeric predictor values, such as male and female, must be converted to 
numeric values, such as -1 and +1. Naive Bayes is a classification technique that is an 
exception. It classifies and makes predictions with categorical data.  

The "naive" (which means unsophisticated in ordinary usage) in naive Bayes means that all the 
predictor features are assumed to be independent. For example, suppose you want to predict a 
person's political inclination, conservative or liberal, based on the person's job (such as cook, 
doctor, etc.), sex (male or female), and income (low, medium, or high). Naive Bayes assumes 
job, sex, and income are all independent. This is obviously not true in many situations. In this 
example, job and income are almost certainly related. In spite of the crude independence 
assumption, naive Bayes classification is often very effective when working with categorical 
data. 

The "Bayes" refers to Bayes’ theorem. Bayes’ theorem is a fairly simple equation characterized 
by a "given" condition to find values such as "the probability that a person is a doctor, given that 
they are a political conservative." The ideas behind Bayes’ theorem are very deep, conceptually 
and philosophically, but fortunately, applying the theorem when performing naive Bayes 
classification is relatively simple in principle (although the implementation details are a bit 
tricky). 

A good way to understand naive Bayes classification, and to see where this chapter is headed, 
is to examine the screenshot of a demo program, shown in Figure 4-a. The goal of the demo 
program is to predict the political inclination (conservative or liberal) of a person based on his or 
her job (analyst, barista, cook, or doctor), sex (male, female), and annual income (low, medium, 
high). Notice each feature is categorical, not numeric. 

The demo program starts with 30 (artificially constructed) data items. The first two items are: 

analyst   male     high   conservative 
barista   female   low    liberal 

The independent X predictor variables, job, sex, and income, are in the first three columns, and 
the dependent Y variable to predict, politics, is in the last column. 

The demo splits the 30-item data set into an 80% (24 data items) training data set and a 20% (6 
data items) test data set in such a way that the data items are randomly assigned to one of the 
two sets. The training data set is used to construct the naive Bayes predictive model, and the 
test data set is used to give an estimate of the model's accuracy when presented with new, 
previously unseen data. 

Next, the demo uses the training data and naive Bayes mathematics to construct a predictive 
model. Behind the scenes, each feature-column is assumed to be independent. 
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After creating the model, the demo computes the model's accuracy on the training data set and 
on the test data set. The model correctly predicts 91.67% of the training items (22 out of 24) and 
83.33% of the test items (5 out of 6). 

 

Figure 4-a: Naive Bayes Classification Demo Program 

Next, the demo program uses the model to predict the political inclination of a hypothetical 
person who has a job as a barista, is a female, and has a medium income. According to the 
model, the probability that the hypothetical person has a liberal inclination is 0.6550 and the 
probability that the person is a conservative is 0.3450; therefore, the unknown person is 
predicted to be a liberal. 
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The sections that follow will describe how naive Bayes classification works, and present and 
explain in detail the code for the demo program. Although there are existing systems and API 
sets that can perform naive Bayes classification, being able to write your own prediction system 
gives you total control of the many possible implementation options, avoids unforeseen legal 
issues, and can give you a good understanding of how other systems work so you can use them 
more effectively. 

Understanding Naive Bayes 

Suppose, as in the demo program, you want to predict the political inclination (conservative or 
liberal) of a person whose job is barista, sex is female, and income is medium. You would 
compute the probability that the person is a conservative, and the probability that the person is a 
liberal, and then predict the outcome with the higher probability. 

Expressed mathematically, the problem is to find these two values: 

P(conservative) = P(conservative | barista & female & medium) 

P(liberal) = P(liberal | barista & female & medium) 

The top equation is sometimes read as, "the probability that Y is conservative, given that X is 
barista and female and medium." Similarly, the bottom equation is, "the probability that Y is 
liberal, given that X is barista and female and medium."  

To compute these probabilities, quantities that are sometimes called partials are needed. The 
partial (denoted PP) for the first dependent variable is: 

PP(conservative) =  
P(barista | conservative) * P(female | conservative) * P(medium | conservative) * 
P(conservative) 

Similarly, the partial for the second dependent variable is: 

PP(liberal) =  
P(barista | liberal) * P(female | liberal) * P(medium | liberal) * P(liberal) 

If these two partials can somehow be computed, then the two probabilities needed to make a 
prediction are: 

P(conservative) = PP(conservative) /  (PP(conservative) + PP(liberal)) 

P(liberal) = PP(liberal) /  (PP(conservative) + PP(liberal)) 

Notice the denominator is the same in each case. This term is sometimes called the evidence. 
The challenge is to find the two partials. In this example, each partial has four terms multiplied 
together. Consider the first term in PP(conservative), which is P(barista | conservative), read as 
"the probability of a barista given that the person is a conservative." Bayes’ theorem gives: 

P(barista | conservative) = Count(barista & conservative) / Count(conservative) 



 

 

98 

Here, Count is just a simple count of the number of applicable data items. In essence, this 
equation looks only at those people who are conservative, and finds what percentage of them 
are baristas. The quantity Count(barista & conservative) is called a joint count. 

The next two terms for the partial for conservative, P(female | conservative) and PP(medium | 
conservative), can be found in the same way: 

P(female | conservative) = Count(female & conservative) / Count(conservative) 
P(medium | conservative) = Count(medium & conservative) / Count(conservative) 

The last term for the partial of conservative is P(conservative), in words, "the probability that a 
person is a conservative." This can be found easily: 

P(conservative) = Count(conservative) / (Count(conservative) + Count(liberal)) 

In other words, the probability that a person is a conservative is just the number of people who 
are conservatives, divided by the total number of people. 

Putting this all together, if the problem is to find the probability that a person is a conservative 
and also the probability that the person is a liberal, if the person is a female barista with medium 
income, you need the partial for conservative and the partial for liberal. The partial for 
conservative is: 

PP(conservative) = 

P(barista | conservative) * P(female | conservative) * P(medium | conservative) * 
P(conservative) = 

Count(barista & conservative) / Count(conservative) * 
Count(female & conservative) / Count(conservative) * 
Count(medium & conservative) / Count(conservative) * 
Count(conservative) / (Count(conservative) + Count(liberal)) 

And the partial for liberal is: 

PP(liberal) = 

P(barista | liberal) * P(female | liberal) * P(medium | liberal) * P(liberal) = 

Count(barista & liberal) / Count(liberal) * 
Count(female & liberal) / Count(liberal) * 
Count(medium & liberal) / Count(liberal) * 
Count(liberal) / (Count(conservative) + Count(liberal)) 

And the two probabilities are: 

P(conservative) = PP(conservative) / (PP(conservative) + PP(liberal)) 

P(liberal) = PP(liberal) / (PP(conservative) + PP(liberal)) 
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Each piece of the puzzle is just a simple count, but there are many pieces. If you review the 
calculations carefully, you'll note that to compute any possible probability, for example P(liberal | 
cook & male & low) or P(conservative | analyst & female & high), you need the joint counts of 
every feature value with every dependent value, like "doctor & conservative", "male & liberal", 
"low & conservative", and so on. You also need the count of each dependent value. 

To predict the political inclination of a female barista with medium income, the demo program 
computes P(conservative | barista & female & medium) and P(liberal | barista & female & 
medium) as follows. 

First, the program scans the 24-item training data and finds all the relevant joint counts, and 
adds 1 to each count. The results are: 

Count(barista & conservative)    =  3 + 1    = 4 
Count(female & conservative)    =  3 + 1    = 4 
Count(medium & conservative)  =  11 + 1  = 12 
Count(barista & liberal)               =  2 + 1    = 3 
Count(female & liberal)               =  8 + 1    = 9 
Count(medium & liberal)             =  5 + 1    = 6 

If you refer back to how partials are computed, you'll see they consist of several joint count 
terms multiplied together. If any joint count is 0, the entire product will be 0, and the calculation 
falls apart. Adding 1 to each joint count prevents this, and is called Laplacian smoothing. 

Next, the program scans the 24-item training data and calculates the counts of the dependent 
variables and adds 3 (the number of features) to each: 

Count(conservative) = 15 + 3 = 18 
Count(liberal) = 9 + 3 = 12 

Adding the number of features, 3 in this case, to each dependent variable count balances the 1 
added to each of the three joint counts. Now the partials are computed like so: 

PP(conservative) = 

Count(barista & conservative) / Count(conservative) * 
Count(female & conservative) / Count(conservative) * 
Count(medium & conservative) / Count(conservative) * 
Count(conservative) / (Count(conservative) + Count(liberal)) = 

= (4 / 18) * (4 / 18) * (12 / 18) * (18 / 30) 

= 0.2222 * 0.2222 * 0.6667 * 0.6000 

= 0.01975 (rounded). 

PP(liberal) = 

Count(barista & liberal) / Count(liberal) * 
Count(female & liberal) / Count(liberal) * 
Count(medium & liberal) / Count(liberal) * 
Count(liberal) / (Count(conservative) + Count(liberal)) = 

= (3 / 12) * (9 / 12) * (6 / 12) * (12 / 30) 
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= 0.2500 * 0.7500 * 0.5000 * 0.4000 

= 0.03750. 

Using the partials, the final probabilities are computed: 

P(conservative) = PP(conservative) / (PP(conservative) + PP(liberal)) 
                          = 0.01975 / (0.01975 + 0.03750) 
                          = 0.3450 (rounded) 

P(liberal) = PP(liberal) / (PP(conservative) + PP(liberal)) 
                = 0.03750 / (0.01975 + 0.03750) 
                = 0.6550 (rounded) 

If you refer to the screenshot in Figure 4-a, you'll see these two probability values displayed. 
Because the probability of liberal is greater than the probability of conservative, the prediction is 
that a female barista with medium income will most likely be a political liberal. 

Demo Program Structure 

The overall structure of the demo program, with a few minor edits to save space, is presented in 
Listing 4-a. To create the demo program, I launched Visual Studio and created a new C# 
console application project named NaiveBayes.  

After the template code loaded into the editor, I removed all using statements at the top of the 

source code, except for the reference to the top-level System namespace, and the one to the 
Collections.Generic namespace. In the Solution Explorer window, I renamed file Program.cs to 
the more descriptive BayesProgram.cs, and Visual Studio automatically renamed class Program 
to BayesProgram. 

using System; 
using System.Collections.Generic; 
namespace NaiveBayes 
{ 
  class BayesProgram 
  { 
    static void Main(string[] args) 
    { 
      Console.WriteLine("Begin Naive Bayes classification demo"); 
      Console.WriteLine("Goal is to predict (liberal/conservative) from job, " + 
        "sex and income"); 
 
      string[][] rawData = new string[30][]; 
      rawData[0] = new string[] { "analyst", "male", "high", "conservative" }; 
      // etc. 
      rawData[29] = new string[] { "barista", "male", "medium", "conservative" }; 
 
      Console.WriteLine("The raw data is: "); 
      ShowData(rawData, 5, true); 
 
      Console.WriteLine("Splitting data into 80%-20% train and test sets"); 
      string[][] trainData; 
      string[][] testData; 
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      MakeTrainTest(rawData, 15, out trainData, out testData); // seed = 15 
      Console.WriteLine("Done"); 
 
      Console.WriteLine("Training data: "); 
      ShowData(trainData, 5, true); 
 
      Console.WriteLine("Test data: "); 
      ShowData(testData, 5, true); 
 
      Console.WriteLine("Creating Naive Bayes classifier object"); 
      BayesClassifier bc = new BayesClassifier(); 
      bc.Train(trainData);  
      Console.WriteLine("Done"); 
 
      double trainAccuracy = bc.Accuracy(trainData); 
      Console.WriteLine("Accuracy of model on train data = " +  
        trainAccuracy.ToString("F4")); 
      double testAccuracy = bc.Accuracy(testData); 
      Console.WriteLine("Accuracy of model on test data  = " + 
        testAccuracy.ToString("F4")); 
 
      Console.WriteLine("Predicting politics for job = barista, sex = female, " + 
        "income = medium "); 
      string[] features = new string[] { "barista", "female", "medium" }; 
 
      string liberal = "liberal"; 
      double pLiberal = bc.Probability(liberal, features); 
      Console.WriteLine("Probability of liberal   = " + 
        pLiberal.ToString("F4")); 
 
      string conservative = "conservative"; 
      double pConservative = bc.Probability(conservative, features); 
      Console.WriteLine("Probability of conservative = " + 
        pConservative.ToString("F4")); 
 
      Console.WriteLine("End Naive Bayes classification demo "); 
      Console.ReadLine(); 
    } // Main 
 
    static void MakeTrainTest(string[][] allData, int seed, 
      out string[][] trainData, out string[][] testData) { . . } 
 
    static void ShowData(string[][] rawData, int numRows, bool indices) { . . } 
  } // Program 
 
  public class BayesClassifier { . . } 
} // ns 

Listing 4-a: Naive Bayes Demo Program Structure 

The demo program class has two static helper methods. Method MakeTrainTest randomly splits 
the source data into an 80% training set and 20% test data. The 80-20 split is hard-coded, and 
you might want to parameterize the percentage of training data. Helper method ShowData 
displays an array-of-arrays style matrix of string values to the shell. 
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All the Bayes classification logic is contained in a single program-defined class named 
BayesClassifier. All the program logic is contained in the Main method. The Main method begins 
by setting up 30 hard-coded (job, sex, income, politics) data items in an array-of-arrays style 
matrix: 

static void Main(string[] args) 
{ 
  Console.WriteLine("\nBegin Naive Bayes classification demo"); 
  Console.WriteLine("Goal is to predict (liberal/conservative) from job, " + 
    "sex and income\n"); 
  string[][] rawData = new string[30][]; 
  rawData[0] = new string[] { "analyst", "male", "high", "conservative" }; 
  rawData[1] = new string[] { "barista", "female", "low", "liberal" }; 
  // etc. 
   rawData[29] = new string[] { "barista", "male", "medium", "conservative" }; 
. . . 

In most realistic scenarios, your source data would be stored in a text file, and you would load it 
into a matrix in memory using a helper method named something like LoadData. Here, the 
dependent variable, politics, is assumed to be in the last column of the data matrix.  

Next, the demo displays a part of the source data, and then creates the training and test sets: 

Console.WriteLine("The raw data is: \n"); 
ShowData(rawData, 5, true); 
 
Console.WriteLine("Splitting data into 80%-20% train and test sets"); 
string[][] trainData; 
string[][] testData; 
MakeTrainTest(rawData, 15, out trainData, out testData); 
Console.WriteLine("Done \n"); 

The 5 argument passed to method ShowData is the number of rows to display, not including the 
last line of data, which is always displayed by default. The 15 argument passed to method 
MakeTrainTest is used as a seed value for a Random object, which randomizes how data items 
are assigned to either the training or test sets. 

Next, the demo displays the first five, and last line, of the training and test sets: 

Console.WriteLine("Training data: \n"); 
ShowData(trainData, 5, true); 
 
Console.WriteLine("Test data: \n"); 
ShowData(testData, 5, true); 

The true argument passed to ShowData directs the method to display row indices. In order to 
see the entire training data set so you can see how Bayes joint counts were calculated in the 
previous section, you could pass 23 as the number of rows. 

Next, the classifier is created and trained: 

Console.WriteLine("Creating Naive Bayes classifier object"); 
Console.WriteLine("Training classifier using training data"); 
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BayesClassifier bc = new BayesClassifier(); 
bc.Train(trainData);  
Console.WriteLine("Done \n"); 

Most of the work is done by method Train. In the case of naive Bayes, the Train method scans 
through the training data and calculates all the joint counts between feature values (like "doctor" 
and "high") and dependent values ("conservative" or "liberal"). The Train method also calculates 
the count of each dependent variable value. 

After the model finishes the training process, the accuracy of the model on the training and test 
sets are calculated and displayed like so: 

double trainAccuracy = bc.Accuracy(trainData); 
Console.WriteLine("Accuracy of model on train data = " + 
trainAccuracy.ToString("F4")); 
double testAccuracy = bc.Accuracy(testData); 
Console.WriteLine("Accuracy of model on test data  = " + 
testAccuracy.ToString("F4")); 

Next, the demo indirectly makes a prediction by computing the probability that a female barista 
with medium income is a liberal: 

Console.WriteLine("\nPredicting politics for job = barista, sex = female, " 
        + "income = medium \n"); 
string[] features = new string[] { "barista", "female", "medium" }; 
 
string liberal = "liberal"; 
double pLiberal = bc.Probability(liberal, features); 
Console.WriteLine("Probability of liberal   = " + pLiberal.ToString("F4")); 
 

Note that because this is a binary classification problem, only one probability is needed to make 
a classification decision. If the probability of either liberal or conservative is greater than 0.5, 
then because the sum of the probabilities of liberal and conservative is 1.0, the probability of the 
other political inclination must be less than 0.5, and vice versa. 
 
The demo concludes by computing the probability that a female barista with medium income is 
a conservative: 
 
. . . 
  string conservative = "conservative"; 
  double pConservative = bc.Probability(conservative, features); 
  Console.WriteLine("Probability of conservative = " + pConservative.ToString("F4")); 
 
  Console.WriteLine("\nEnd Naive Bayes classification demo\n"); 
  Console.ReadLine(); 
} // Main 

An option to consider is to write a class method Predicted, which returns the dependent variable 
with higher probability. 
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Defining the BayesClassifer Class 

The structure of the program-defined class BayesClassifier is presented in Listing 4-b. The 
class has three data members and exposes four public methods. The key to understanding the 
implementation so that you can modify it if necessary to meet your own needs, is to understand 
the three data structures. The class data structures are illustrated in Figure 4-b. 

public class BayesClassifier 
{ 
  private Dictionary<string, int>[] stringToInt; 
  private int[][][] jointCounts; 
  private int[] dependentCounts; 
 
  public BayesClassifier() { . . } 
  public void Train(string[][] trainData) { . . } 
  public double Probability(string yValue, string[] xValues) { . . } 
  public double Accuracy(string[][] data) { . . } 
} 

Listing 4-b: The BayesClassifier Class Structure 

Data member stringToInt is an array of Dictionary objects. There is one Dictionary object for 

each column of data, and each Dictionary maps a string value, such as "barista" or 
"conservative", to a zero-based integer. For example, stringToInt[0]["doctor"] returns the 

integer value for feature 0 (job), value "doctor". The zero-based integer is used as an index into 
the other data structures. 

 

Figure 4-b: Naive Bayes Key Data Structures 
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The integer index value for a string feature value is the order in which the feature value is 
encountered when the training method scans the training data. For example, for the demo 
program, the first five lines of the training data generated by method MakeTrainTest are: 

[0]   doctor     male    medium   conservative 
[1]     cook   female       low        liberal 
[2]     cook   female       low        liberal 
[3]  analyst     male      high   conservative 
[4]  barista     male    medium   conservative 

When method Train scans the first column of the training data, it will assign "doctor" = 0, "cook" 

= 1, "analyst" = 2, and "barista" = 3. Similarly, after scanning, the values "male" = 0, "female" = 
1, "medium" = 0, "low" = 1, "high" = 2, "conservative" = 0, and "liberal" = 1 will be stored into the 
stringToInt Dictionary objects. Note that these assignments are likely to change if method 

MakeTrainTest uses a different seed value and generates a different set of training data. 

Class data member jointCounts holds the joint count of each possible pair of feature value 

and dependent value. For the demo example, there are a total of nine feature values: analyst, 
barista, cook, doctor, male, female, low, medium, and high. There are two dependent values: 
conservative and liberal. Therefore there are a total of 9 * 2 = 18 joint counts for the example: 
(analyst & conservative), (analyst & liberal), (barista & conservative) . . . , (high & liberal). 

The expression jointCounts[2][0][1] holds the count of training items where feature 2 

(income) equals value 0 (medium), and dependent 1 (liberal). Recall that each joint count has 1 
added to avoid multiplication by zero (Laplacian smoothing). 

Class member dependentCounts holds the number of each dependent variable. For example, 

the expression dependentCounts[0] holds the number of training items where the dependent 

value is 0 (conservative). Recall that each cell in array dependentCounts has 3 (the number of 

features for the problem) added to balance the 1 added to each joint count. 

The class constructor is short and simple: 

public BayesClassifier() 
{ 
  this.stringToInt = null; 
  this.jointCounts = null; 
  this.dependentCounts = null; 
} 

In many OOP implementation scenarios, a class constructor allocates memory for the key 
member arrays and matrices. However, for naive Bayes, the number of cells to allocate in each 
of the three data structures will not be known until the training data is presented, so method 
Train will perform allocation. 

One design alternative to consider is to pass the training data to the constructor. This design 
has some very subtle issues, both favorable and unfavorable, compared to having the training 
method perform allocation. A second design alternative is to pass the constructor integer 
parameters that hold the number of features, the number of distinct values in each feature, and 
the number of distinct dependent variable values. 
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The Training Method 

Many machine classification algorithms work by creating some mathematical function that 
accepts feature values that are numeric and returns a numeric value that represents the 
predicted class. Examples of math-equation based algorithms include logistic regression 
classification, neural network classification, perceptron classification, support vector machine 
classification, and others. In these algorithms, the training process typically involves finding the 
values for a set of numeric constants, usually called the weights, which are used by the 
predicting equation.  

Naive Bayes classification training does not search for a set of weights. Instead, the training 
simply scans the training data and calculates joint feature-dependent counts, and the counts of 
the dependent variable. These counts are used by the naive Bayes equations to compute the 
probability of a dependent class, given a set of feature values. In this sense, naive Bayes 
training is relatively simple. 

The definition of method Train begins with: 

public void Train(string[][] trainData) 
{ 
  int numRows = trainData.Length; 
  int numCols = trainData[0].Length; 
  this.stringToInt = new Dictionary<string, int>[numCols]; 
. . . 

Method Train works directly with an array-of-arrays style matrix of string values. An alternative is 
to preprocess the training data, and convert each categorical value, such as "doctor", into its 
corresponding integer value (0) and store this data in an integer matrix. 

The array of Dictionary objects is allocated with the number of columns, and so includes the 
dependent variable, political inclination, in the demo. An important assumption is that the 
dependent variable is located in the last column of the training matrix. 

Next, the dictionaries for each feature are instantiated and populated: 

for (int col = 0; col < numCols; ++col)  
{ 
  stringToInt[col] = new Dictionary<string, int>(); 
  
  int idx = 0; 
  for (int row = 0; row < numRows; ++row) 
  { 
    string s = trainData[row][col]; 
    if (stringToInt[col].ContainsKey(s) == false) // first time seen 
    { 
      stringToInt[col].Add(s, idx); // ex: doctor -> 0 
      ++idx; // prepare for next string 
    } 
  } // each row 
} // each col 
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The training matrix is processed column by column. As each new feature value is discovered in 
a column, its index, in variable idx, is saved. The .NET generic Dictionary collection is fairly 

sophisticated. The purpose of storing each value's index is so that the index can be looked up 
quickly. An alternative is to store each distinct column value in a string array. Then the cell index 
is the value's index. But this approach would require a linear search through the string array. 

Next, the jointCounts data structure is allocated like this: 

this.jointCounts = new int[numCols - 1][][]; // number features 
 
for (int c = 0; c < numCols - 1; ++c) // not y-column 
{ 
  int count = this.stringToInt[c].Count;  
  jointCounts[c] = new int[count][]; 
} 
 
for (int i = 0; i < jointCounts.Length; ++i) 
  for (int j = 0; j < jointCounts[i].Length; ++j) 
    jointCounts[i][j] = new int[2]; // binary classification 

For me at least, when working with data structures such as jointCounts, it's absolutely 

necessary to sketch a diagram, similar to the one in Figure 4-b, to avoid making mistakes. 
Working from left to right, the first dimension of jointCounts is allocated with the number of 

features (three in the demo). Then each of those references is allocated with the number of 
distinct values for that feature. For example, feature 0, job, has four distinct values. The number 
of distinct values is stored as the Count property of the string-to-int Dictionary collection for the 
feature. 

The last dimension of jointCounts is allocated with hard-coded size 2. This makes the class 

strictly a binary classifier. To extend the implementation to a multiclass classifier, you'd just 
replace the 2 with the number of distinct dependent variable values: 

int numDependent = stringToInt[stringToInt.Length - 1].Count; 
jointCounts[i][j] = new int[numDependent]; 

Next, each cell in jointCounts is initialized with 1 to avoid any cell being 0, which would cause 

trouble: 

for (int i = 0; i < jointCounts.Length; ++i) 
  for (int j = 0; j < jointCounts[i].Length; ++j) 
    for (int k = 0; k < jointCounts[i][j].Length; ++k) 
      jointCounts[i][j][k] = 1; 

Working with a data structure that has three index dimensions is not trivial, and can take some 
time to figure out. Next, method Train walks through each training data item and increments the 
appropriate cell in the jointCounts data structure: 

for (int i = 0; i < numRows; ++i) 
{ 
  string yString = trainData[i][numCols - 1]; // dependent value 
  int depIndex = stringToInt[numCols - 1][yString]; // corresponding index 
  for (int j = 0; j < numCols - 1; ++j) 
  { 
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    int attIndex = j; // aka feature, index 
    string xString = trainData[i][j]; // like "male" 
    int valIndex = stringToInt[j][xString]; // corresponding index 
    ++jointCounts[attIndex][valIndex][depIndex]; 
  } 
} 

Next, method Train allocates the data structure that stores the number of data items with each 
of the possible dependent values, and initializes the count in each cell to the number of features 
to use Laplacian smoothing: 

this.dependentCounts = new int[2]; // binary 
for (int i = 0; i < dependentCounts.Length; ++i) // Laplacian 
  dependentCounts[i] = numCols - 1; // number features 

The hard-coded 2 makes this strictly a binary classifier, so you may want to modify the code to 
handle multiclass problems. As before, you can use the Count property of the Dictionary object 
for the column to determine the number of distinct dependent variable values. Here, the number 
of features is the number of columns of the training data matrix, less 1, to account for the 
dependent variable in the last column. 

Method Train concludes by walking through the training data matrix, and counts and stores the 
number of each dependent variable value, conservative and liberal, in the demo: 

. . . 
  for (int i = 0; i < trainData.Length; ++i) 
  { 
    string yString = trainData[i][numCols - 1]; // 'conservative' or 'liberal' 
    int yIndex = stringToInt[numCols - 1][yString]; // 0 or 1 
    ++dependentCounts[yIndex]; 
  } 
  return;  
} 

Here, I use an explicit return keyword for no reason other than to note that it is possible. In a 

production environment, it's fairly important to follow a standard set of style guidelines that 
presumably addresses things like using an explicit return with a void method. 

Method Probability 

Class method Probability returns the Bayesian probability of a specified dependent class value 
given a set of feature values. In essence, method Probability is the prediction method. For 
example, for the demo data, to compute the probability that a person has a political inclination of 
liberal, given that they have a job of doctor, sex of male, and income of high, you could call: 

string[] featureVals = new string[] { "doctor", "male", "high" }; 
double pLib = bc.Probability("liberal", featureVals); // prob person is liberal 

For binary classification, if this probability is greater than 0.5, you would conclude the person 
has a liberal political inclination. If the probability is less than 0.5, you'd conclude the person is a 
conservative. 
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Figure 4-c: Computing a Bayesian Probability 

The Probability method uses a matrix, conditionals, and two arrays, unconditionals and 

partials, to store the values needed to compute the partials for each dependent variable 

value, and then uses the two partials to compute the requested probability. Those data 
structures are illustrated in Figure 4-c. 

The method's definition begins: 

public double Probability(string yValue, string[] xValues) 
{ 
  int numFeatures = xValues.Length;  
  double[][] conditionals = new double[2][]; // binary 
  for (int i = 0; i < 2; ++i) 
    conditionals[i] = new double[numFeatures]; 
. . . 

If you refer to the section that explains how naive Bayes works, you'll recall that to compute a 
probability, you need two so-called partials, one for each dependent variable value. A partial is 
the product of conditional probabilities and one unconditional probability. For example, to 
compute the probability of liberal given barista and female, and medium, one partial is the 
product of P(barista | liberal), P(female | liberal), P(medium | liberal), and P(liberal). 

In the demo, for just one partial, you need three conditional probabilities, one for each 
combination of the specified feature values and the dependent value. But to compute any 
probability for a binary classification problem, you need both partials corresponding to the two 
possible dependent variable values. Therefore, if there are two dependent variable values, and 
three features, you need 2 * 3 = 6 conditional probabilities to compute both partials. 
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The conditional probabilities are stored in the local matrix conditionals. The row index is the 

index of the dependent variable, and the column index is the index of the feature value. For 
example, conditionals[0][2] corresponds to dependent variable 0 (conservative) and 

feature 2 (income). Put another way, for the demo, the first row of conditionals holds the 

three conditional probabilities for conservative, and the second row holds the three conditional 
probabilities for liberal. 

Next, array unconditionals, which holds the unconditional probabilities of each dependent 

variable value, is allocated, and the independent x-values and dependent y-value are converted 
from strings to integers: 

double[] unconditionals = new double[2];  
int y = this.stringToInt[numFeatures][yValue];  
int[] x = new int[numFeatures]; 
for (int i = 0; i < numFeatures; ++i) 
{ 
  string s = xValues[i]; 
  x[i] = this.stringToInt[i][s]; 
} 

Because a variable representing the number of features is used so often in the code, a design 
alternative is to create a class member named something like numFeatures, rather than 

recreate it as a local variable for each method. 

Next, the conditional probabilities are computed and stored using count information that was 
computed by the Train method: 

for (int k = 0; k < 2; ++k) // each y-value 
{ 
  for (int i = 0; i < numFeatures; ++i) 
  { 
    int attIndex = i; 
    int valIndex = x[i]; 
    int depIndex = k; 
    conditionals[k][i] = (jointCounts[attIndex][valIndex][depIndex] * 1.0) / 
      dependentCounts[depIndex]; 
  } 
} 

Although the code here is quite short, it is some of the trickiest code I've ever worked with when 
implementing machine learning algorithms. For me at least, sketching out diagrams like those in 
Figures 4-b and 4-c is absolutely essential in order to write the code in the first place, and 
correct bugs later. 

Next, method Probability computes the probabilities of each dependent value and stores those 
values: 

int totalDependent = 0; // ex: count(conservative) + count(liberal) 
for (int k = 0; k < 2; ++k) 
  totalDependent += this.dependentCounts[k]; 
 
for (int k = 0; k < 2; ++k) 
  unconditionals[k] = (dependentCounts[k] * 1.0) / totalDependent; 
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Notice that I qualify the first reference to member array dependentCounts using the this 

keyword, but I don't use this on the second reference. From a style perspective, I sometimes 

use this technique just to remind myself that an array, variable, or object is a class member. 

Next, the partials are computed and stored: 

double[] partials = new double[2]; 
for (int k = 0; k < 2; ++k) 
{ 
  partials[k] = 1.0; // because we are multiplying 
  for (int i = 0; i < numFeatures; ++i) 
    partials[k] *= conditionals[k][i]; 
  partials[k] *= unconditionals[k]; 
} 

Next, the sum of the two (for binary classification) partials is computed and stored, and the 
requested probability is computed and returned: 

. . . 
  double evidence = 0.0; 
  for (int k = 0; k < 2; ++k) 
    evidence += partials[k]; 
 
  return partials[y] / evidence; 
} 

Recall that the sum of partials is sometimes called the evidence term in naive Bayes 
terminology. Let me reiterate that the code for method probability is very tricky. The key to 
understanding this code, and many other machine learning algorithms, is having a clear picture 
(literally) of the data structures, arrays, and matrices used. 

Method Accuracy 

Method Accuracy computes how well the trained model predicts the dependent variable for a 
set of training data, or test data, which has known dependent variable values. The accuracy of 
the model on the training data gives you a rough idea of whether the model is effective or not. 
The accuracy of the model on the test data gives you a rough estimate of how well the model 
will predict when presented with new data, where the dependent variable value is not known. 

The definition of method Accuracy begins: 

public double Accuracy(string[][] data) 
{ 
  int numCorrect = 0; 
  int numWrong = 0; 
 
  int numRows = data.Length; 
  int numCols = data[0].Length; 
. . . 
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Next, the method iterates through each data item and extracts the x-values—for example, 
"barista", "female", and "medium"—and extracts the known y-value—for example, 
"conservative". The x-values and the y-value are fed to the Probability method. If the computed 
probability is greater than 0.5, the model has made a correct classification: 

. . . 

  for (int i = 0; i < numRows; ++i) // row 
  { 
    string yValue = data[i][numCols - 1]; // assumes y in last column 
    string[] xValues = new string[numCols - 1]; 
    Array.Copy(data[i], xValues, numCols - 1); 
    double p = this.Probability(yValue, xValues); 
    if (p > 0.50) 
      ++numCorrect; 
    else 
      ++numWrong; 
  } 
  return (numCorrect * 1.0) / (numCorrect + numWrong); 
} 

A common design alternative is to use a different threshold value instead of the 0.5 used here. 
For example, suppose that for some data item, method Probability returns 0.5001. The 
classification is just barely correct in some sense. So you might want to count probabilities 
greater than 0.60 as correct, probabilities of less than 0.40 as wrong, and probabilities between 
0.40 and 0.60 as inconclusive. 

Converting Numeric Data to Categorical Data 

Naive Bayes classification works with categorical data such as low, medium, and high for 
annual income, rather than numeric values such as $36,000.00. If a data set contains some 
numeric data and you want to apply naive Bayes classification, one approach is to convert the 
numeric values to categorical values. This process is called data discretization, or more 
informally, binning the data. 

There are three main ways to bin data. The simplest, called equal width, is to create intervals, or 
“buckets,” of the same size. The second approach, used with equal frequency, is to create 
buckets so that each bucket has an (approximately) equal number of data values in it. The third 
approach is to create buckets using a clustering algorithm such as k-means, so that data values 
are grouped by similarity to each other. 

Each of the three techniques has significant pros and cons, so there is no one clear best way to 
bin data. That said, equal-width binning is usually the default technique.  

There are many different ways to implement equal-width binning. Suppose you want to convert 
the following 10 numeric values to either "small", "medium", "large", or "extra-large" (four 
buckets) using equal-width binning: 

2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 9.0, 10.0, 12.0, 14.0 

Here, the data is sorted, but equal-width binning does not require this. First, the minimum and 
maximum values are determined: 
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min = 2.0 
max = 14.0 

Next, the width of each bucket is computed: 

width = (max - min) / number-buckets 
         = (14.0 - 2.0) / 4 
         = 3.0 

Next, a preliminary set of intervals that define each bucket are constructed: 

[2.0, 5.0)  [5.0, 8.0)  [8.0, 11.0)  [11.0, 14.0)  -> interval data 
  [0]  [1]    [2]  [3]    [4]  [5]     [6]   [7]   -> cell index 
    {0}         {1}         {2}           {3}      -> bucket 

Here, the notation [2.0, 5.0) means greater than or equal to 2.0, and also less than 5.0. Next, 
the two interval end points are modified to capture any outliers that may appear later: 

[-inf, 5.0)  [5.0, 8.0)  [8.0, 11.0)  [11.0, +inf)  -> interval data 
   [0]  [1]    [2]  [3]    [4]  [5]     [6]   [7]   -> cell index 
     {0}         {1}         {2}           {3}      -> bucket 

Here, -inf and +inf stand for negative infinity and positive infinity. Now the interval data can be 
used to determine the categorical equivalent of a numeric value. Value 8.0 belongs to bucket 2, 
so 8.0 maps to "large". If some new data arrives later, it can be binned too. For example, if 
some new value x = 12.5 appears, it belongs to bucket 3 and would map to "extra-large". 

One possible implementation of equal-width binning can take the form of two methods: the first 
to create the interval data, and a second to assign a bucket or category to a data item. For 
example, a method to create interval data could begin as: 

static double[] MakeIntervals(double[] data, int numBins) // bin numeric data 
{ 
  double max = data[0]; // find min & max 
  double min = data[0]; 
  for (int i = 0; i < data.Length; ++i) 
  { 
    if (data[i] < min) min = data[i]; 
    if (data[i] > max) max = data[i]; 
  } 
  double width = (max - min) / numBins;  
. . .  

Static method MakeIntervals accepts an array of data to bin, and the number of buckets to 
create, and returns the interval data in an array. The minimum and maximum values are 
determined, and the bucket width is computed as described earlier. 

Next, the preliminary intervals are created: 

double[] intervals = new double[numBins * 2]; 
intervals[0] = min; 
intervals[1] = min + width; 
for (int i = 2; i < intervals.Length - 1; i += 2) 
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{ 
  intervals[i] = intervals[i - 1]; 
  intervals[i + 1] = intervals[i] + width; 
} 

Notice that when using the scheme described here, all the interval boundary values, except the 
first and last, are duplicated. It would be possible to store each boundary value just once. 
Duplicating boundary values may be mildly inefficient, but leads to code that is much easier to 
understand and modify. 

And now, the first and last boundary values are modified so that the final interval data will be 
able to handle any possible input value: 

. . . 
  intervals[0] = double.MinValue; // outliers 
  intervals[intervals.Length - 1] = double.MaxValue; 
 
  return intervals; 
} 

With this binning design, a partner method to perform the binning can be defined: 

static int Bin(double x, double[] intervals) 
{ 
  for (int i = 0; i < intervals.Length - 1; i += 2) 
  { 
    if (x >= intervals[i] && x < intervals[i + 1]) 
      return i / 2; 
  } 
  return -1; // error 
} 

Static method Bin does a simple linear search until it finds the correct interval. A design 
alternative is to do a binary search. Calling the binning methods could resemble: 

double[] data = new double[] { 2.0, 3.0, . . , 14.0 }; 
double[] intervals = MakeIntervals(data, 4); // 4 bins 
int bin = Bin(x, 9.5); // bucket for value 9.5 

Comments 

When presented with a machine learning classification problem, naive Bayes classification is 
often used first to establish baseline results. The idea is that the assumption of independence of 
predictor variables is almost certainly not true, so other, more sophisticated classification 
techniques should create models that are at least as good as a naive Bayes model.  

One important area in which naive Bayes classifiers are often used is text and document 
classification. For example, suppose you want to classify email messages from customers into 
low, medium, or high priority. The predictor variables would be each possible word in the 
messages. Naive Bayes classification is surprisingly effective for this type of problem. 
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Chapter 4 Complete Demo Program Source Code 

using System; 
using System.Collections.Generic; 
namespace NaiveBayes 
{ 
  class BayesProgram 
  { 
    static void Main(string[] args) 
    { 
      Console.WriteLine("\nBegin Naive Bayes classification demo"); 
      Console.WriteLine("Goal is to predict (liberal/conservative) from job, " + 
        "sex and income\n"); 
 
      string[][] rawData = new string[30][]; 
      rawData[0] = new string[] { "analyst", "male", "high", "conservative" }; 
      rawData[1] = new string[] { "barista", "female", "low", "liberal" }; 
      rawData[2] = new string[] { "cook", "male", "medium", "conservative" }; 
      rawData[3] = new string[] { "doctor", "female", "medium", "conservative" }; 
      rawData[4] = new string[] { "analyst", "female", "low", "liberal" }; 
      rawData[5] = new string[] { "doctor", "male", "medium", "conservative" }; 
      rawData[6] = new string[] { "analyst", "male", "medium", "conservative" }; 
      rawData[7] = new string[] { "cook", "female", "low", "liberal" }; 
      rawData[8] = new string[] { "doctor", "female", "medium", "liberal" }; 
      rawData[9] = new string[] { "cook", "female", "low", "liberal" }; 
      rawData[10] = new string[] { "doctor", "male", "medium", "conservative" }; 
      rawData[11] = new string[] { "cook", "female", "high", "liberal" }; 
      rawData[12] = new string[] { "barista", "female", "medium", "liberal" }; 
      rawData[13] = new string[] { "analyst", "male", "low", "liberal" }; 
      rawData[14] = new string[] { "doctor", "female", "high", "conservative" }; 
 
      rawData[15] = new string[] { "barista", "female", "medium", "conservative" }; 
      rawData[16] = new string[] { "doctor", "male", "medium", "conservative" }; 
      rawData[17] = new string[] { "barista", "male", "high", "conservative" }; 
      rawData[18] = new string[] { "doctor", "female", "medium", "liberal" }; 
      rawData[19] = new string[] { "analyst", "male", "low", "liberal" }; 
      rawData[20] = new string[] { "doctor", "male", "medium", "conservative" }; 
      rawData[21] = new string[] { "cook", "male", "medium", "conservative" }; 
      rawData[22] = new string[] { "doctor", "female", "high", "conservative" }; 
      rawData[23] = new string[] { "analyst", "male", "high", "conservative" }; 
      rawData[24] = new string[] { "barista", "female", "medium", "liberal" }; 
      rawData[25] = new string[] { "doctor", "male", "medium", "conservative" }; 
      rawData[26] = new string[] { "analyst", "female", "medium", "conservative" }; 
      rawData[27] = new string[] { "analyst", "male", "medium", "conservative" }; 
      rawData[28] = new string[] { "doctor", "female", "medium", "liberal" }; 
      rawData[29] = new string[] { "barista", "male", "medium", "conservative" }; 
 
      Console.WriteLine("The raw data is: \n"); 
      ShowData(rawData, 5, true); 
 
      Console.WriteLine("Splitting data into 80%-20% train and test sets"); 
      string[][] trainData; 
      string[][] testData; 
      MakeTrainTest(rawData, 15, out trainData, out testData); // seed = 15 is nice 
      Console.WriteLine("Done \n"); 
 
      Console.WriteLine("Training data: \n"); 
      ShowData(trainData, 5, true); 
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      Console.WriteLine("Test data: \n"); 
      ShowData(testData, 5, true); 
 
      Console.WriteLine("Creating Naive Bayes classifier object"); 
      Console.WriteLine("Training classifier using training data"); 
      BayesClassifier bc = new BayesClassifier(); 
      bc.Train(trainData); // compute key count data structures 
      Console.WriteLine("Done \n"); 
 
      double trainAccuracy = bc.Accuracy(trainData); 
      Console.WriteLine("Accuracy of model on train data = " + 
        trainAccuracy.ToString("F4")); 
      double testAccuracy = bc.Accuracy(testData); 
      Console.WriteLine("Accuracy of model on test data  = " +  
        testAccuracy.ToString("F4")); 
 
      Console.WriteLine("\nPredicting politics for job = barista, sex = female, " 
        + "income = medium \n"); 
      string[] features = new string[] { "barista", "female", "medium" }; 
 
      string liberal = "liberal"; 
      double pLiberal = bc.Probability(liberal, features); 
      Console.WriteLine("Probability of liberal   = " + 
        pLiberal.ToString("F4")); 
 
      string conservative = "conservative"; 
      double pConservative = bc.Probability(conservative, features); 
      Console.WriteLine("Probability of conservative = " + 
        pConservative.ToString("F4")); 
 
      Console.WriteLine("\nEnd Naive Bayes classification demo\n"); 
      Console.ReadLine(); 
    } // Main 
 
 
    static void MakeTrainTest(string[][] allData, int seed, 
      out string[][] trainData, out string[][] testData) 
    { 
      Random rnd = new Random(seed); 
      int totRows = allData.Length; 
      int numTrainRows = (int)(totRows * 0.80); 
      int numTestRows = totRows - numTrainRows; 
      trainData = new string[numTrainRows][]; 
      testData = new string[numTestRows][]; 
 
      string[][] copy = new string[allData.Length][]; // ref copy of all data 
      for (int i = 0; i < copy.Length; ++i) 
        copy[i] = allData[i]; 
 
      for (int i = 0; i < copy.Length; ++i) // scramble order 
      { 
        int r = rnd.Next(i, copy.Length); 
        string[] tmp = copy[r]; 
        copy[r] = copy[i]; 
        copy[i] = tmp; 
      } 
      for (int i = 0; i < numTrainRows; ++i) 
        trainData[i] = copy[i]; 
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      for (int i = 0; i < numTestRows; ++i) 
        testData[i] = copy[i + numTrainRows]; 
    } // MakeTrainTest 
 
    static void ShowData(string[][] rawData, int numRows, bool indices) 
    { 
      for (int i = 0; i < numRows; ++i) 
      { 
        if (indices == true) 
          Console.Write("[" + i.ToString().PadLeft(2) + "]  "); 
        for (int j = 0; j < rawData[i].Length; ++j) 
        { 
          string s = rawData[i][j]; 
          Console.Write(s.PadLeft(14) + " "); 
        } 
        Console.WriteLine(""); 
      } 
      if (numRows != rawData.Length-1) 
        Console.WriteLine(". . ."); 
      int lastRow = rawData.Length - 1; 
      if (indices == true) 
        Console.Write("[" + lastRow.ToString().PadLeft(2) + "]  "); 
      for (int j = 0; j < rawData[lastRow].Length; ++j) 
      { 
        string s = rawData[lastRow][j]; 
        Console.Write(s.PadLeft(14) + " "); 
      } 
      Console.WriteLine("\n"); 
    } 
 
    static double[] MakeIntervals(double[] data, int numBins) // bin numeric data 
    { 
      double max = data[0]; // find min & max 
      double min = data[0]; 
      for (int i = 0; i < data.Length; ++i) 
      { 
        if (data[i] < min) min = data[i]; 
        if (data[i] > max) max = data[i]; 
      } 
      double width = (max - min) / numBins; // compute width 
 
      double[] intervals = new double[numBins * 2]; // intervals 
      intervals[0] = min; 
      intervals[1] = min + width; 
      for (int i = 2; i < intervals.Length - 1; i += 2) 
      { 
        intervals[i] = intervals[i - 1]; 
        intervals[i + 1] = intervals[i] + width; 
      } 
      intervals[0] = double.MinValue; // outliers 
      intervals[intervals.Length - 1] = double.MaxValue; 
 
      return intervals; 
    } 
 
    static int Bin(double x, double[] intervals) 
    { 
      for (int i = 0; i < intervals.Length - 1; i += 2) 
      { 
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        if (x >= intervals[i] && x < intervals[i + 1]) 
          return i / 2; 
      } 
      return -1; // error 
    } 
 
  } // Program 
 
  public class BayesClassifier 
  { 
    private Dictionary<string, int>[] stringToInt; // "male" -> 0, etc. 
    private int[][][] jointCounts; // [feature][value][dependent] 
    private int[] dependentCounts;  
 
    public BayesClassifier() 
    { 
      this.stringToInt = null; // need training data to know size 
      this.jointCounts = null; //  need training data to know size 
      this.dependentCounts = null; //  need training data to know size 
    } 
 
    public void Train(string[][] trainData) 
    { 
      // 1. scan training data and construct one dictionary per column 
      int numRows = trainData.Length; 
      int numCols = trainData[0].Length; 
      this.stringToInt = new Dictionary<string, int>[numCols]; // allocate array 
   
      for (int col = 0; col < numCols; ++col) // including y-values 
      { 
        stringToInt[col] = new Dictionary<string, int>(); // instantiate Dictionary 
  
        int idx = 0; 
        for (int row = 0; row < numRows; ++row) // each row of curr column 
        { 
          string s = trainData[row][col]; 
          if (stringToInt[col].ContainsKey(s) == false) // first time seen 
          { 
            stringToInt[col].Add(s, idx); // ex: analyst -> 0 
            ++idx; 
          } 
        } // each row 
      } // each col 
 
      // 2. scan and count using stringToInt Dictionary 
      this.jointCounts = new int[numCols - 1][][]; // do not include the y-value 
 
      // a. allocate second dim 
      for (int c = 0; c < numCols - 1; ++c) // each feature column but not y-column 
      { 
        int count = this.stringToInt[c].Count; // number possible values for column 
        jointCounts[c] = new int[count][]; 
      } 
 
      // b. allocate last dimension = always 2 for binary classification 
      for (int i = 0; i < jointCounts.Length; ++i) 
        for (int j = 0; j < jointCounts[i].Length; ++j) 
        { 
          //int numDependent = stringToInt[stringToInt.Length - 1].Count; 
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          //jointCounts[i][j] = new int[numDependent]; 
          jointCounts[i][j] = new int[2]; // binary classification 
        } 
  
      // c. init joint counts with 1 for Laplacian smoothing 
      for (int i = 0; i < jointCounts.Length; ++i) 
        for (int j = 0; j < jointCounts[i].Length; ++j) 
          for (int k = 0; k < jointCounts[i][j].Length; ++k) 
            jointCounts[i][j][k] = 1; 
  
      // d. compute joint counts 
      for (int i = 0; i < numRows; ++i) 
      { 
        string yString = trainData[i][numCols - 1]; // dependent value  
        int depIndex = stringToInt[numCols - 1][yString]; // corresponding index  
        for (int j = 0; j < numCols - 1; ++j) 
        { 
          int attIndex = j; 
          string xString = trainData[i][j]; // an attribute value like "male" 
          int valIndex = stringToInt[j][xString]; // corresponding integer like 0 
          ++jointCounts[attIndex][valIndex][depIndex]; 
        } 
      } 
 
      // 3. scan and count number of each of the 2 dependent values 
      this.dependentCounts = new int[2]; // binary 
 
      for (int i = 0; i < dependentCounts.Length; ++i) // Laplacian init 
        dependentCounts[i] = numCols - 1; // numCols - 1 = num features 
 
      for (int i = 0; i < trainData.Length; ++i) 
      { 
        string yString = trainData[i][numCols - 1]; // conservative or liberal 
        int yIndex = stringToInt[numCols - 1][yString]; // 0 or 1 
        ++dependentCounts[yIndex]; 
      } 
 
      return;  // the trained 'model' is jointCounts and dependentCounts 
    } // Train 
 
    public double Probability(string yValue, string[] xValues) 
    { 
      int numFeatures = xValues.Length; // ex: 3 (job, sex, income) 
 
      double[][] conditionals = new double[2][]; // binary 
      for (int i = 0; i < 2; ++i) 
        conditionals[i] = new double[numFeatures]; // ex: P('doctor' | conservative) 
 
      double[] unconditionals = new double[2]; // ex: P('conservative'), P('liberal') 
 
      // convert strings to ints 
      int y = this.stringToInt[numFeatures][yValue]; 
      int[] x = new int[numFeatures]; 
      for (int i = 0; i < numFeatures; ++i) 
      { 
        string s = xValues[i]; 
        x[i] = this.stringToInt[i][s]; 
      } 
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      // compute conditionals 
      for (int k = 0; k < 2; ++k) // each y-value 
      { 
        for (int i = 0; i < numFeatures; ++i) 
        { 
          int attIndex = i; 
          int valIndex = x[i]; 
          int depIndex = k; 
          conditionals[k][i] = 
            (jointCounts[attIndex][valIndex][depIndex] * 1.0) / 
               dependentCounts[depIndex]; 
        } 
      } 
 
      // compute unconditionals 
      int totalDependent = 0; // ex: count(conservative) + count(liberal) 
      for (int k = 0; k < 2; ++k) 
        totalDependent += this.dependentCounts[k]; 
 
      for (int k = 0; k < 2; ++k) 
        unconditionals[k] = (dependentCounts[k] * 1.0) / totalDependent; 
 
      // compute partials 
      double[] partials = new double[2]; 
      for (int k = 0; k < 2; ++k) 
      { 
        partials[k] = 1.0; // because we are multiplying 
        for (int i = 0; i < numFeatures; ++i) 
          partials[k] *= conditionals[k][i]; 
        partials[k] *= unconditionals[k]; 
      } 
 
      // evidence = sum of partials 
      double evidence = 0.0; 
      for (int k = 0; k < 2; ++k) 
        evidence += partials[k]; 
 
      return partials[y] / evidence; 
    } // Probability 
 
    public double Accuracy(string[][] data) 
    { 
      int numCorrect = 0; 
      int numWrong = 0; 
 
      int numRows = data.Length; 
      int numCols = data[0].Length; 
 
      for (int i = 0; i < numRows; ++i) // row 
      { 
        string yValue = data[i][numCols - 1]; // assumes y in last column 
        string[] xValues = new string[numCols - 1]; 
        Array.Copy(data[i], xValues, numCols - 1); 
        double p = this.Probability(yValue, xValues); 
        if (p > 0.50) 
          ++numCorrect; 
        else 
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          ++numWrong; 
      } 
      return (numCorrect * 1.0) / (numCorrect + numWrong); 
    } 
  } // class BayesClassifier 
 
} // ns 
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Chapter 5  Neural Network Classification 

Introduction 

Neural networks are software systems that loosely model biological neurons and synapses. 
Neural network classification is one of the most interesting and sophisticated topics in all of 
machine learning. One way to think of a neural network is as a complex mathematical function 
that accepts one or more numeric inputs and generates one or more numeric outputs. 

 

Figure 5-a: Neural Network Classification Demo 
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A good way to get an understanding of what neural networks are is to examine the screenshot 
of a demo program in Figure 5-a. The goal of the demo is to create a model that can predict the 
species of an iris flower based on the flower's color, petal length, and petal width. 

The source data set has 30 items. The first three data items are: 

blue, 1.4, 0.3, setosa 
pink, 4.9, 1.5, versicolor 
teal, 5.6, 1.8, virginica 

The predictor variables (also called independent variables, features, and x-data) are in the first 
three columns. The first column holds the iris flower's color, which can be blue, pink, or teal. The 
second and third columns are the flower's petal length and width. The fourth column holds the 
dependent variable, species, which can be setosa, versicolor, or virginica. 

Note: the demo data is an artificial data set patterned after a famous, real data set called 
Fisher's Iris data. Fisher's real data set has 150 items and uses sepal length and sepal width 
instead of color. (A sepal is a green, leaf-like structure). 

Because neural networks work internally with numeric data, the categorical color values and 
species must be encoded as numeric values. The demo assumes this has been done 
externally. The first three lines of encoded data are: 

[ 0]   1.0     0.0     1.4     0.3     1.0     0.0     0.0 
[ 1]   0.0     1.0     4.9     1.5     0.0     1.0     0.0 
[ 2]  -1.0    -1.0     5.6     1.8     0.0     0.0     1.0 

The species values are encoded using what is called 1-of-N dummy encoding. Categorical data 
value setosa maps to numeric values (1, 0, 0), versicolor maps to (0, 1, 0), and virginica maps 
to (0, 0, 1). There are several other, less common, encoding schemes for categorical dependent 
variables. 

The independent variable color values are encoded using 1-of-(N-1) effects encoding. Color 
blue maps to (1, 0), pink maps to (0, 1), and teal maps to (-1, -1). Although there are 
alternatives, in my opinion the somewhat unusual looking 1-of-(N-1) effects encoding is usually 
the best approach to use for categorical predictor variables. 

Using the 30-item source data, the demo program sets up a 24-item training set, used to create 
the neural network model, and a 6-item test set, used to estimate the accuracy of the model 
when presented with new, previously unseen data. 

The demo program creates a four-input-node, six-hidden-node, three-output-node neural 
network. The number of input and output nodes, four and three, are determined by the structure 
of the encoded data. The number of hidden nodes for a neural network is a free parameter and 
must be determined by trial and error. 

There are dozens of variations of neural networks. The demo program uses the most basic 
form, which is a fully-connected, feed-forward architecture, with a hyperbolic tangent (often 
abbreviated tanh) hidden layer activation function and a softmax output layer activation function. 
Activation functions will be explained shortly. 
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Behind the scenes, a 4-6-3 neural network has a total of (4)(6) + 6 + (6)(3) + 3 = 51 numeric 
values, called weights and biases. These weights determine the output values for a given set of 
input values. Training a neural network is the process of finding the best set of values for the 
weights and biases, so that when presented with the training data, the computed outputs closely 
match the known outputs. Then, when presented with new data, the neural network uses the 
best weights found to make predictions. 

There are several techniques that can be used to train a neural network. By far, the most 
common technique is called back-propagation. In fact, back-propagation training is so common 
that people new to neural networks sometimes assume it is the only training technique. The 
demo program uses an alternative technique called particle swarm optimization (PSO). 

Basic PSO training requires just two parameter values. The demo program uses 12 particles, 
and sets a maximum training loop count of 500. These parameters will be explained shortly. 

After the neural network is trained using PSO, the demo program displays the values of the 51 
weights and biases that define the model. The demo computes the accuracy of the final model 
on the training data, which is 91.67% (22 out of 24 correct), and the accuracy on the test data 
(83.33%, five out of six correct). The 83.33% figure can be interpreted as a rough estimate of 
how well the final neural network model would predict the species of new, previously unseen iris 
flowers. 

Understanding Neural Network Classification 

The process by which a neural network computes output values is called the feed-forward 
mechanism. Output values are determined by the input values, the hidden weights and bias 
values, and two activation functions. The process is best explained with a concrete example. 
See the diagram in Figure 5-b. 

The diagram shows a fully connected 3-4-2 dummy neural network, which does not correspond 
to the demo problem. Although the neural network appears to have three layers of nodes, the 
first layer, the input layer, is normally not counted, so the neural network in the diagram is 
usually called a two-layer network. 

Each arrow connecting one node to another represents a weight value. Each hidden and output 
node also has an arrow that represents a special weight called a bias. The neural network's 
three input values are { 1.0, 5.0, 9.0 }, and the two output values are { 0.4886, 0.5114 }. 

The feed-forward process begins by computing the values for the hidden nodes. Each hidden 
node value is an activation function applied to the sum of the products of input node values and 
their associated weight values, plus the node's bias value. For example, the top-most hidden 
node's value is computed as: 

hidden[0] sum = (1.0)(0.01) + (5.0)(0.05) + (9.0)(0.09) + 0.13 
                        = 0.01 + 0.25 + 0.81 + 0.13 
                        = 1.20 
 
hidden[0] value  = tanh(1.20) 
                          = 0.8337 (rounded) 
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The dummy neural network is using tanh, the hyperbolic tangent function. The tanh function 
accepts any real value and returns a result that is between -1.0 and +1.0. The main alternative 
to the tanh function for hidden layer activation is the logistic sigmoid function. 

 

Figure 5-b: The Neural Network Feed-Forward Mechanism 

Next, each output node is computed in a similar way. Preliminary output values for all nodes are 
computed, and then the preliminary values are combined, so that all output node values sum to 
1.0. In Figure 5-b, the two output node preliminary output values are: 

output[0] prelim = (.8337)(.17) + (.8764)(.19) + (.9087)(.21) + (.9329)(.23) + .25 
                          = 0.9636 
 
output[1] prelim = (.8337)(.18) + (.8764)(.20) + (.9087)(.22) + (.9329)(.24) + .26 
                          = 1.0091 

These two preliminary output values are combined using an activation function called the 
softmax function to give the final output values like so: 

output[0] = e0.9636 / (e0.9636 + e1.0091) 

               = 2.6211 / (2.6211 + 2.7431) 
               = 0.4886 
 

output[1] = e1.0091 / (e0.9636 + e1.0091) 

               = 2.7431 / (2.6211 + 2.7431) 
               = 0.5114 
The point of using the softmax activation function is to coerce output values to sum to 1.0 so 
that they can be interpreted as the probabilities of the y-values. 
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For the dummy neural network in Figure 5-b, there are two output nodes, so suppose those 
nodes correspond to predicting male or female, where male is dummy-encoded as (1, 0) and 
female is encoded as (0, 1). If the output values (0.4886, 0.5114) are interpreted as 
probabilities, the higher probability is in the second position, and so the output values predict (0, 
1), which is female. 

Binary neural network classification, where there are two output values, is a special case that can, 
and usually is, treated differently from problems with three or more output values. With just two 
possible y-values, instead of using softmax activation with two output nodes and dummy encoding, 
you can use the logistic sigmoid function with just a single output node and 0-1 encoding. 

The logistic sigmoid function is defined as f(z) = 1.0 / (1.0 + e-z). It accepts any real-valued input 

and returns a value between 0.0 and 1.0. So if two categorical y-values are male and female, 
you would encode male as 0 and female as 1. You would create a neural network with just one 
output node. When computing the value of the single output node, you'd use the logistic sigmoid 
function for activation. The result will be between 0.0 and 1.0, for example, 0.6775. In this case, 
the computed output, 0.6775, is closer to 1 (female) than to 0 (male) so you'd conclude the 
output is female. 

Another very common design alternative applies to any type of neural network classifier. Instead 
of using separate, distinct bias values for each hidden and output node, you can consider the 
bias values as special weights that have a hidden, dummy, constant associated input value of 
1.0. In my opinion, treating bias values as special weights with invisible 1.0 inputs is 
conceptually unappealing, and more error-prone than just treating bias values as bias values. 

Demo Program Overall Structure 

To create the demo, I launched Visual Studio and selected the new C# console application 
template. After the template code loaded into the editor, I removed all using statements at the 

top of the source code, except for the single reference to the top-level System namespace. In 
the Solution Explorer window, I renamed file Program.cs to the more descriptive 
NeuralProgram.cs, and Visual Studio automatically renamed class Program to NeuralProgram. 

The overall structure of the demo program, with a few minor edits to save space, is presented in 
Listing 5-a. In order to keep the size of the example code small, and the main ideas as clear as 
possible, the demo program omits normal error checking.  

using System; 
namespace NeuralClassification 
{ 
  class NeuralProgram 
  { 
    static void Main(string[] args) 
    { 
      Console.WriteLine("Begin neural network demo"); 
      Console.WriteLine("Goal is to predict species of Iris flower"); 
      Console.WriteLine("Raw data looks like: "); 
      Console.WriteLine("blue, 1.4, 0.3, setosa"); 
      Console.WriteLine("pink, 4.9, 1.5, versicolor"); 
      Console.WriteLine("teal, 5.6, 1.8, virginica \n"); 
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      double[][] trainData = new double[24][]; 
      trainData[0] = new double[] { 1, 0, 1.4, 0.3, 1, 0, 0 }; 
      trainData[1] = new double[] { 0, 1, 4.9, 1.5, 0, 1, 0 }; 
      // etc. 
      trainData[23] = new double[] { -1, -1, 5.8, 1.8, 0, 0, 1 }; 
 
      double[][] testData = new double[6][]; 
      testData[0] = new double[] { 1, 0, 1.5, 0.2, 1, 0, 0 }; 
      testData[1] = new double[] { -1, -1, 5.9, 2.1, 0, 0, 1 }; 
      // etc. 
      testData[5] = new double[] { 1, 0, 6.3, 1.8, 0, 0, 1 }; 
 
      Console.WriteLine("Encoded training data is: "); 
      ShowData(trainData, 5, 1, true); 
 
      Console.WriteLine("Encoded test data is: "); 
      ShowData(testData, 2, 1, true); 
 
      Console.WriteLine("Creating a 4-input, 6-hidden, 3-output neural network"); 
      Console.WriteLine("Using tanh and softmax activations"); 
      const int numInput = 4; 
      const int numHidden = 6; 
      const int numOutput = 3; 
      NeuralNetwork nn = new NeuralNetwork(numInput, numHidden, numOutput); 
 
      int numParticles = 12; 
      int maxEpochs = 500; 
      Console.WriteLine("Setting numParticles = " + numParticles); 
      Console.WriteLine("Setting maxEpochs = " + maxEpochs); 
       
      Console.WriteLine("Beginning training using Particle Swarm Optimization"); 
      double[] bestWeights = nn.Train(trainData, numParticles, 
        maxEpochs, exitError, probDeath); 
      Console.WriteLine("Final neural network weights and bias values: "); 
      ShowVector(bestWeights, 10, 3, true); 
 
      nn.SetWeights(bestWeights); 
      double trainAcc = nn.Accuracy(trainData); 
      Console.WriteLine("Accuracy on training data = " + trainAcc.ToString("F4")); 
 
      double testAcc = nn.Accuracy(testData); 
      Console.WriteLine("Accuracy on test data = " + testAcc.ToString("F4")); 
 
      Console.WriteLine("End neural network demo\n"); 
      Console.ReadLine(); 
    } // Main 
 
    static void ShowVector(double[] vector, int valsPerRow, int decimals, 
      bool newLine) { . . } 
 
    static void ShowData(double[][] data, int numRows, int decimals, 
      bool indices) { . . } 
 
  } // Program class 
 
  public class NeuralNetwork { . . } 
} // ns 

Listing 5-a: Neural Network Classification Demo Program Structure 
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All the neural network classification logic is contained in a single program-defined class named 
NeuralNetwork. All the program logic is contained in the Main method. The Main method begins 
by setting up 24 hard-coded (color, length, width, species) data items in an array-of-arrays style 
matrix: 

static void Main(string[] args) 
{ 
  Console.WriteLine("\nBegin neural network demo\n"); 
  Console.WriteLine("Raw data looks like: \n"); 
  Console.WriteLine("blue, 1.4, 0.3, setosa"); 
  Console.WriteLine("pink, 4.9, 1.5, versicolor"); 
  Console.WriteLine("teal, 5.6, 1.8, virginica \n"); 
  double[][] trainData = new double[24][]; 
  trainData[0] = new double[] { 1, 0, 1.4, 0.3, 1, 0, 0 }; 
  trainData[1] = new double[] { 0, 1, 4.9, 1.5, 0, 1, 0 }; 
  trainData[2] = new double[] { -1, -1, 5.6, 1.8, 0, 0, 1 }; 
. . .  

The demo program assumes that the color values, blue, pink, and teal, have been converted 
either manually or programmatically to 1-of-(N-1) encoded form, and that the three species 
values have been converted to 1-of-N encoded form.  

For simplicity, the demo does not normalize the numeric petal length and width values. This is 
acceptable here only because their magnitudes, all between 0.2 and 7.0, are close enough to 
the -1, 0, and +1 values of the 1-of-(N-1) encoded color values such that neither feature will 
dominate the other. In most situations, you should normalize your data. 

Next, the demo creates six hard-coded test data items: 

double[][] testData = new double[6][]; 
testData[0] = new double[] { 1, 0, 1.5, 0.2, 1, 0, 0 }; 
testData[1] = new double[] { -1, -1, 5.9, 2.1, 0, 0, 1 }; 
testData[2] = new double[] { 0, 1, 1.4, 0.2, 1, 0, 0 }; 
testData[3] = new double[] { 0, 1, 4.7, 1.6, 0, 1, 0 }; 
testData[4] = new double[] { 1, 0, 4.6, 1.3, 0, 1, 0 }; 
testData[5] = new double[] { 1, 0, 6.3, 1.8, 0, 0, 1 }; 

In a non-demo scenario, the training and test data would be programmatically generated from 
the source data set using a utility method named something like MakeTrainTest or SplitData.  

After displaying a few lines of the training and test data using static helper method ShowData, 
the demo program creates and instantiates a program-defined NeuralNetwork classifier object: 

Console.WriteLine("\nCreating a 4-input, 6-hidden, 3-output neural network"); 
Console.WriteLine("Using tanh and softmax activations \n"); 
int numInput = 4; 
int numHidden = 6; 
int numOutput = 3; 
NeuralNetwork nn = new NeuralNetwork(numInput, numHidden, numOutput); 
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There are four input nodes to accommodate two values for the 1-of-(N-1) encoded color, plus 
the petal length and width. There are three output nodes to accommodate the 1-of-N encoded 
three species values: setosa, versicolor, and virginica. Determining the number of hidden nodes 
to use is basically a matter of trial and error. 

Next, the neural network is trained: 

int numParticles = 12; 
int maxEpochs = 500; 
Console.WriteLine("Setting numParticles = " + numParticles); 
Console.WriteLine("Setting maxEpochs = " + maxEpochs); 
Console.WriteLine("\nBeginning training using Particle Swarm Optimization"); 
double[] bestWeights = nn.Train(trainData, numParticles, maxEpochs); 
 
Console.WriteLine("Training complete \n"); 
Console.WriteLine("Final neural network weights and bias values:"); 
ShowVector(bestWeights, 10, 3, true); 

The demo program uses particle swarm optimization (PSO) for training. There are many 
variations of PSO, but the demo uses the simplest form, which requires only the number of 
virtual particles and the maximum number of iterations for the main optimization loop. 

After training completes, the best weights found are stored in the NeuralNetwork object. For 
convenience, the training method also explicitly returns the best weights found. The 51 weights 
and bias values are displayed using helper method ShowVector. The demo program does not 
save the weight values that define the model, so you might want to write a SaveWeights 
method. 

The demo program concludes by computing the classification accuracy of the final model: 

. . . 
  nn.SetWeights(bestWeights); 
  double trainAcc = nn.Accuracy(trainData); 
  Console.WriteLine("\nAccuracy on training data = " + trainAcc.ToString("F4")); 
 
  double testAcc = nn.Accuracy(testData); 
  Console.WriteLine("Accuracy on test data = " + testAcc.ToString("F4")); 
 
  Console.WriteLine("\nEnd neural network demo\n"); 
  Console.ReadLine(); 
} // Main 

Note that because the best weights found are stored in the NeuralNetwork object, the call to 
method SetWeights is not really necessary. 

The demo program does not use the model to make a prediction for a new data item that has an 
unknown species. Prediction could look like: 

double[] unknown = new double[] { 1, 0, 1.9, 0.5 }; // blue, petal = 1.9, 0.5 
nn.SetWeights(bestWeights); 
string species = nn.Predict(unknown); 
Console.WriteLine("Predicted species is " + species); 
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Defining the NeuralNetwork Class 

The structure of the program-defined NeuralNetwork class is presented in Listing 5-b. Data 
member array inputs holds the x-values. Member matrix ihWeights holds the input-to-hidden 

weights. For example, if ihWeights[0][2] is 0.234, then the weight connecting input node 0 to 

hidden node 2 has value 0.234. 

public class NeuralNetwork 
{ 
  private int numInput;   // number of input nodes 
  private int numHidden;  // number of hidden nodes 
  private int numOutput;  // number of output nodes 
 
  private double[] inputs; 
  private double[][] ihWeights; // input-hidden 
  private double[] hBiases; 
  private double[] hOutputs; 
 
  private double[][] hoWeights; // hidden-output 
  private double[] oBiases; 
  private double[] outputs; 
 
  private Random rnd; 
 
  public NeuralNetwork(int numInput, int numHidden, int numOutput) { . . } 
  private static double[][] MakeMatrix(int rows, int cols) 
 
  public void SetWeights(double[] weights) { . . } 
 
  public double[] ComputeOutputs(double[] xValues) { . . } 
  private static double HyperTan(double x) { . . } 
  private static double[] Softmax(double[] oSums) { . . } 
 
  public double[] Train(double[][] trainData, int numParticles, int maxEpochs) { . . } 
  private void Shuffle(int[] sequence) { . . } 
  private double MeanSquaredError(double[][] trainData, double[] weights) { . . } 
 
  public double Accuracy(double[][] testData) { . . } 
  private static int MaxIndex(double[] vector) { . . } 
     
  // ---------------------------------------------- 
  private class Particle { . . } 
  // ---------------------------------------------- 
} 
 

Listing 5-b: The NeuralNetwork Class  

Member array hBiases holds the hidden node bias values. Member array hOutputs holds the 

values of the hidden nodes after the hidden layer tanh function has been applied. After they're 
computed, these values act as local inputs when computing the output layer nodes. 

Member matrix hoWeights holds the hidden-to-output node weights. Member array oBiases 

holds the bias values for the output nodes. Member array outputs holds the final output node 

values. Member rnd is a Random object, which is used during the PSO training algorithm.  
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The NeuralNetwork class has a single constructor. Static helper method MakeMatrix is called by 
the constructor, and is just a convenience to allocate the ihWeights and hoWeights matrices. 

The constructor code is simple: 

public NeuralNetwork(int numInput, int numHidden, int numOutput) 
{ 
  this.numInput = numInput; 
  this.numHidden = numHidden; 
  this.numOutput = numOutput; 
  this.inputs = new double[numInput]; 
  this.ihWeights = MakeMatrix(numInput, numHidden); 
  this.hBiases = new double[numHidden]; 
  this.hOutputs = new double[numHidden]; 
  this.hoWeights = MakeMatrix(numHidden, numOutput); 
  this.oBiases = new double[numOutput]; 
  this.outputs = new double[numOutput]; 
  this.rnd = new Random(0);  
} 

Random object rnd is instantiated with a seed value of 0 only because that value gave a 

representative demo run. You might want to experiment with different seed values. 

Method ComputeOutputs implements the feed-forward mechanism. The definition begins: 

public double[] ComputeOutputs(double[] xValues) 
{ 
  double[] hSums = new double[numHidden]; // hidden nodes sums scratch array 
  double[] oSums = new double[numOutput]; // output nodes sums 
. . .  

Recall that hidden and output nodes are computed in two steps. First, a sum of products is 
computed, and then an activation function is applied. Arrays hSums and oSums hold the sum of 

products. A design alternative is to declare hSums and oSums as class-scope arrays to avoid 

allocating them on every call to ComputeOutputs. However, if you do this, you'd have to 
remember to explicitly zero out both arrays inside ComputeOutputs. 

Next, ComputeOutputs transfers the x-data parameter values into the class inputs array: 

for (int i = 0; i < xValues.Length; ++i) // copy x-values to inputs 
  this.inputs[i] = xValues[i]; 

A very important design alternative is to delete the class inputs array from the NeuralNetwork 

definition and use the x-data values directly. This saves the overhead of copying values into 
inputs at the expense of clarity. 

Next, the hidden node values are computed using the feed-forward mechanism: 

for (int j = 0; j < numHidden; ++j)  // sum of weights * inputs 
  for (int i = 0; i < numInput; ++i) 
    hSums[j] += this.inputs[i] * this.ihWeights[i][j]; // note += 
 
for (int i = 0; i < numHidden; ++i)  // add biases 
  hSums[i] += this.hBiases[i]; 
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for (int i = 0; i < numHidden; ++i)   // apply activation 
  this.hOutputs[i] = HyperTan(hSums[i]); 

Here, the hyperbolic tangent function is hard-coded into the class definition. A design alternative 
is to pass the hidden layer activation function in as a parameter. This gives additional calling 
flexibility at the expense of significantly increased design complexity.  

Helper method HyperTan is defined: 

private static double HyperTan(double x) 
{ 
  if (x < -20.0) 
    return -1.0; // approximation is correct to 30 decimals 
  else if (x > 20.0) 
    return 1.0; 
  else return Math.Tanh(x); 
} 

Although you can just call built-in method Math.Tanh directly, the demo checks the input value x 
first because for small or large values of x, the tanh function returns values that are extremely 
close to 0.0 or 1.0, respectively. 

After computing the hidden node values, method ComputeOutputs computes the output layer 
node values: 

for (int j = 0; j < numOutput; ++j)   // sum of weights * hOutputs 
  for (int i = 0; i < numHidden; ++i) 
    oSums[j] += hOutputs[i] * hoWeights[i][j]; 
 
for (int i = 0; i < numOutput; ++i)  // add biases to input-to-hidden sums 
  oSums[i] += oBiases[i]; 
 
double[] softOut = Softmax(oSums); // all outputs at once for efficiency 
Array.Copy(softOut, outputs, softOut.Length); 

Calculating the softmax outputs is a bit subtle. If you refer to the explanation of how softmax 
works, you'll notice that the calculation requires all the preliminary outputs, so unlike hidden 
nodes which are activated one at a time, output nodes are activated as a group. 

The definition of helper method Softmax is: 

private static double[] Softmax(double[] oSums) 
{ 
  // determine max output-sum 
  double max = oSums[0]; 
  for (int i = 0; i < oSums.Length; ++i) 
    if (oSums[i] > max) max = oSums[i]; 
 
  // determine scaling factor -- sum of exp(each val - max) 
  double scale = 0.0; 
  for (int i = 0; i < oSums.Length; ++i) 
    scale += Math.Exp(oSums[i] - max); 
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  double[] result = new double[oSums.Length]; 
  for (int i = 0; i < oSums.Length; ++i) 
    result[i] = Math.Exp(oSums[i] - max) / scale; 
 
  return result; // now scaled so that xi sum to 1.0 
} 

Method Softmax is short, but quite tricky. Instead of computing softmax outputs using the direct 
definition, method Softmax uses some clever math. The indirect implementation gives the same 
result as the definition, but avoids potential arithmetic underflow or overflow problems, because 
intermediate values in the direct-definition calculation can be extremely close 0.0. 

Understanding Particle Swarm Optimization 

The most common technique to train neural networks is called back-propagation. Back-
propagation is based on classical calculus techniques, and is conceptually complex, but 
relatively simple to implement. The major disadvantage of back-propagation is that it requires 
you to specify values for two parameters called the learning rate and the momentum. Back-
propagation is extraordinarily sensitive to these parameter values, meaning that even a tiny 
change can have a dramatic impact. 

Particle swarm optimization (PSO) also requires parameter values, but is much less sensitive 
than back-propagation. The major disadvantage of using PSO for training is that it is usually 
slower than using back-propagation. 

PSO is loosely modeled on coordinated group behavior, such as the flocking of birds. PSO 
maintains a collection of virtual particles where each particle represents a potential best solution 
to a problem, which, in the case of neural networks, is a set of values for the weights and biases 
that minimize the error between computed output values and known output values in a set of 
training data. 

Expressed in very high-level pseudo-code, PSO looks like: 

initialize n particles to random solutions/positions and velocities 
loop until done 
  for each particle 
    compute a new velocity based on best known positions 
    use new velocity to move particle to new position/solution 
  end for 
end loop 
return best solution/position found by any particle 

PSO is illustrated in Figure 5-c. In a simple case where a solution consists of two values, like 
(1.23, 4.56), you can think of a solution as a point on an (x, y) plane. The graph shows two 
particles. In most situations, there would be many particles. The goal is to minimize the function 
f(x, y) = 3x2 + 3y2. The solution is x = y = 0.0, so the problem doesn't really need PSO; the 
example is intended just to illustrate how PSO works. 
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Figure 5-c: Example of Particle Swarm Optimization 

The first particle, in the lower left, starts with a randomly generated initial solution of (-6.0, -5.0) 
and random initial velocity (direction) values that move the particle up and to the left. The 
second particle, in the upper right, has random initial value (9.5, 5.1) and random initial velocity 
that will move the particle up and to the left. 

The graph shows how each particle moves during the first nine iterations of the main PSO loop. 
The new position of each particle is influenced by its current direction, the best position found by 
the particle at any time, and the best position found by any of the particles at any time. The net 
result is that particles tend to move in a coordinated way and converge on a good, hopefully 
optimum, solution. In the graph, you can see that both particles quickly got very close to the 
optimal solution of (0, 0). 

In math terms, the PSO equations to update a particle's velocity and position are: 

v(t+1) = (w * v(t)) + (c1 * r1 * (p(t) – x(t)) + (c2 * r2 * (g(t) – x(t)) 

x(t+1) = x(t) + v(t+1) 

The position update process is actually much simpler than these equations appear. The first 
equation updates a particle's velocity. The term v(t+1) means the velocity at time t+1. Notice 
that v is bold, indicating that velocity is a vector value and has multiple components, such as 
(1.55, -0.33), rather than being a single scalar value. 
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The new velocity depends on three terms. The first term is w * v(t). The w factor is called the 
inertia weight and is just a constant like 0.73 (more on this shortly), and v(t) is the current 
velocity at time t. The second term is c1 * r1 * (p(t) – x(t)). The c1 factor is a constant called the 
cognitive (or personal) weight. The r1 factor is a random variable in the range [0, 1), which is 
greater than or equal to 0 and strictly less than 1. The p(t) vector value is the particle's best 
position found so far. The x(t) vector value is the particle's current position. 

The third term in the velocity update equation is (c2 * r2 * (g(t) – x(t)). The c2 factor is a 
constant called the social (or global) weight. The r2 factor is a random variable in the range [0, 
1). The g(t) vector value is the best known position found by any particle in the swarm so far. 
Once the new velocity, v(t+1), has been determined, it is used to compute the new particle 
position x(t+1). 

A concrete example will help make the update process clear. Suppose that you are trying to 
minimize f(x, y) = 3x2 + 3y2. Suppose a particle's current position, x(t), is (x, y) = (3.0, 4.0), and 
that the particle's current velocity, v(t), is (-1.0, -1.5). Additionally, assume that constant w = 0.7, 
constant c1 = 1.4, constant c2 = 1.4, and that random numbers r1 and r2 are 0.5 and 0.6 
respectively. Finally, suppose that the particle's current best known position is p(t) = (2.5, 3.6) 
and that the current global best known position found by any particle in the swarm is g(t) = (2.3, 
3.4). Then the new velocity values are: 

v(t+1) = (0.7 * (-1.0,-1.5)) + (1.4 * 0.5 * (2.5, 3.6) - (3.0, 4.0)) + (1.4 * 0.6 * (2.3, 3.4) – (3.0, 4.0)) 
           = (-0.70, -1.05) + (-0.35, -0.28) + (-0.59, -0.50) 
           = (-1.64, -1.83) 

Now the new velocity is added to the current position to give the particle's new position: 

x(t+1) = (3.0, 4.0) + (-1.64, -1.83) 
           = (1.36, 2.17) 

Recall that the optimal solution is (x, y) = (0, 0). Observe that the update process has improved 
the old position or solution from (3.0, 4.0) to (1.36, 2.17). If you examine the update process, 
you'll see that the new velocity is the old velocity (times a weight) plus a factor that depends on 
a particle's best known position, plus another factor that depends on the best known position 
from all particles in the swarm. Therefore, a particle's new position tends to move toward a 
better position based on the particle's best known position and the best known position from all 
particles. 

Training using PSO 

The implementation of method Train begins: 

public double[] Train(double[][] trainData, int numParticles, int maxEpochs) 
{ 
  int numWeights = (this.numInput * this.numHidden) + this.numHidden + 
    (this.numHidden * this.numOutput) + this.numOutput; 
. . .  
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Method Train assumes that the training data has the dependent variable being predicted, iris 
flower species in the case of the demo, stored in the last column of matrix trainData. Next, 

relevant local variables are set up: 

int epoch = 0; 
double minX = -10.0; // for each weight 
double maxX = 10.0; 
double w = 0.729; // inertia weight 
double c1 = 1.49445; // cognitive weight 
double c2 = 1.49445; // social weight 
double r1, r2; // cognitive and social randomizations 

Variable epoch is the main loop counter variable. Variables minX and maxX set limits for each 

weight and bias value. Setting limits in this way is called weight restriction. In general, you 
should use weight restriction only with x-data that has been normalized, or where the 
magnitudes are all roughly between -10.0 and +10.0. 

Variable w, called the inertia weight, holds a value that influences the extent a particle will keep 

moving in its current direction. Variables c1 and c2 hold values that determine the influence of a 

particle's best known position, and the best known position of any particle in the swarm. The 
values of w, c1, and c2 used here are ones recommended by research. 

Next, the swarm is created: 

Particle[] swarm = new Particle[numParticles]; 
double[] bestGlobalPosition = new double[numWeights]; 
double bestGlobalError = double.MaxValue;  

The definition of class Particle is presented in Listing 5-c.  

private class Particle 
{ 
  public double[] position; // equivalent to NN weights 
  public double error; // measure of fitness 
  public double[] velocity; 
 
  public double[] bestPosition; // best position found so far by this Particle 
  public double bestError; 
 
  public Particle(double[] position, double error, double[] velocity, 
    double[] bestPosition, double bestError) 
  { 
    this.position = new double[position.Length]; 
    position.CopyTo(this.position, 0); 
    this.error = error; 
    this.velocity = new double[velocity.Length]; 
    velocity.CopyTo(this.velocity, 0); 
    this.bestPosition = new double[bestPosition.Length]; 
    bestPosition.CopyTo(this.bestPosition, 0); 
    this.bestError = bestError; 
  } 
} 

Listing 5-c: Particle Class Definition 
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Class Particle is a container class that holds a virtual position, velocity, and error associated 
with the position. A minor design alternative is to use a structure instead of a class. The demo 
program defines class Particle inside class NeuralNetwork. If you refactor the demo code to 
another programming language that does not support nested classes, you'll have to define class 
Particle as a standalone class. 

Method Train initializes the swarm of particles with his code: 

for (int i = 0; i < swarm.Length; ++i) 
{ 
  double[] randomPosition = new double[numWeights]; 
  for (int j = 0; j < randomPosition.Length; ++j) 
    randomPosition[j] = (maxX - minX) * rnd.NextDouble() + minX; 
 
  double error = MeanSquaredError(trainData, randomPosition); 
  double[] randomVelocity = new double[numWeights]; 
 
  for (int j = 0; j < randomVelocity.Length; ++j) 
  { 
    double lo = 0.1 * minX; 
    double hi = 0.1 * maxX; 
    randomVelocity[j] = (hi - lo) * rnd.NextDouble() + lo; 
  } 
  swarm[i] = new Particle(randomPosition, error, randomVelocity, 
    randomPosition, error); 
 
  // does current Particle have global best position/solution? 
  if (swarm[i].error < bestGlobalError) 
  { 
    bestGlobalError = swarm[i].error; 
    swarm[i].position.CopyTo(bestGlobalPosition, 0); 
  } 
} 

There's quite a lot going on here, and so you may want to refactor the code into a method 
named something like InitializeSwarm. For each particle, a random position is generated, 
subject to the minX and maxX constraints. The random position is fed to helper method 

MeanSquaredError to determine the associated error. A significant design alternative is to use a 
different form of error called the mean cross entropy error. 

Because a particle velocity consists of values that are added to the particle's current position, 
initial random velocity values are set to be smaller (on average, one-tenth) than initial position 
values. The 0.1 scaling factor is to a large extent arbitrary, but has worked well in practice. 

After a random position and velocity have been created, those values are fed to the Particle 

constructor. The call to the constructor may look a bit odd at first glance. The last two 
arguments represent the particle's best position found and the error associated with that 
position. So, at particle initialization, these best-values are the initial position and error values. 

After initializing the swarm, method Train begins the main loop, which uses PSO to seek a set of 
best weights: 

int[] sequence = new int[numParticles]; // process particles in random order 
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for (int i = 0; i < sequence.Length; ++i) 
  sequence[i] = i; 
 
while (epoch < maxEpochs) 
{ 
  double[] newVelocity = new double[numWeights]; 
  double[] newPosition = new double[numWeights]; 
  double newError; 
  Shuffle(sequence); 
  . . . 

In general, when using PSO it is better to process the virtual particles in random order. Local 
array sequence holds the indices of the particles and the indices are randomized using a helper 

method Shuffle, which uses the Fisher-Yates algorithm: 

private void Shuffle(int[] sequence) 
{ 
  for (int i = 0; i < sequence.Length; ++i) 
  { 
    int ri = rnd.Next(i, sequence.Length); 
    int tmp = sequence[ri]; 
    sequence[ri] = sequence[i]; 
    sequence[i] = tmp; 
  } 
} 

The main processing loop executes a fixed maxEpochs times. An important alternative is to exit 

early if the current best error drops below some small value. The code could resemble: 

if (bestGlobalError < exitError) 
  break; 

Here, exitError would be passed as a parameter to method Train or the Particle constructor. 

The training method continues by updating each particle. The first step is to compute a new 
random velocity (speed and direction) based on the current velocity, the particle's best known 
position, and the swarm's best known position: 

for (int pi = 0; pi < swarm.Length; ++pi) // each Particle (index) 
{ 
  int i = sequence[pi]; 
  Particle currP = swarm[i]; // for coding convenience 
   
  for (int j = 0; j < currP.velocity.Length; ++j) // each x-value of the velocity 
  { 
    r1 = rnd.NextDouble(); 
    r2 = rnd.NextDouble(); 
 
    newVelocity[j] = (w * currP.velocity[j]) + 
      (c1 * r1 * (currP.bestPosition[j] - currP.position[j])) + 
      (c2 * r2 * (bestGlobalPosition[j] - currP.position[j])); 
  } 
  newVelocity.CopyTo(currP.velocity, 0); 
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This code is the heart of the PSO algorithm, and it is unlikely you will need to modify it. After a 
particle's new velocity has been computed, that velocity is used to compute the particle's new 
position, which represents the neural network's set of weights and bias values: 

for (int j = 0; j < currP.position.Length; ++j) 
{ 
  newPosition[j] = currP.position[j] + newVelocity[j]; // compute new position 
  if (newPosition[j] < minX) // keep in range 
    newPosition[j] = minX; 
  else if (newPosition[j] > maxX) 
    newPosition[j] = maxX; 
} 
newPosition.CopyTo(currP.position, 0); 

Notice the new position is constrained by minX and maxX, which is essentially implementing 

neural network weight restriction. A minor design alternative is to remove this constraining 
mechanism. After the current particle's new position has been determined, the error associated 
with that position is computed: 

newError = MeanSquaredError(trainData, newPosition); 
currP.error = newError; 
if (newError < currP.bestError) // new particle best? 
{ 
  newPosition.CopyTo(currP.bestPosition, 0); 
  currP.bestError = newError; 
} 
 
if (newError < bestGlobalError) // new global best? 
{ 
  newPosition.CopyTo(bestGlobalPosition, 0); 
  bestGlobalError = newError; 
} 

At this point, method Train has finished processing each particle, and so the main loop counter 
variable is updated. A significant design addition is to implement code that simulates the death 
of a particle. The idea is to kill a particle with a small probability, and then give birth to a new 
particle at a random location. This helps prevent the swarm from getting stuck at a non-optimal 
solution at the risk of killing a good particle (one that is moving to an optimal solution). 

After the main loop finishes, method Train concludes. The best position (weights) found is 
copied into the neural network's weight and bias matrices and arrays, using class method 
SetWeights, and these best weights are also explicitly returned: 

. . . 

  SetWeights(bestGlobalPosition);  // best position is a set of weights 
  double[] retResult = new double[numWeights]; 
  Array.Copy(bestGlobalPosition, retResult, retResult.Length); 
  return retResult; 
} // Train 
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Method SetWeights is presented in the complete demo program source code at the end of this 
chapter. Notice all the weights and bias values are stored in a single array, which corresponds 
to the best position found by any particle. This means that there is an implied ordering of the 
weights. The demo program assumes input-to-hidden weights are stored first, followed by 
hidden node biases, followed by hidden-to-output weights, followed by output node biases. 

Other Scenarios 

This chapter presents all the key information needed to understand and implement a neural 
network system. There are many additional, advanced topics you might wish to investigate. The 
biggest challenge when working with neural networks is avoiding over-fitting. Over-fitting occurs 
when a neural network is trained so that the resulting model has perfect or near-perfect 
accuracy on the training data, but the model predicts poorly when presented with new data. 
Holding out a test data set can help identify when over-fitting has occurred. A closely related 
technique is called k-fold cross validation. Instead of dividing the source data into two sets, the 
data is divided into k sets, where k is often 10. 

Another approach for dealing with over-fitting is to divide the source data into three sets: a 
training set, a validation set, and a test set. The neural network is trained using the training data, 
but during training, the current set of weights and bias values are periodically applied to the 
validation data. Error on both the training and validation data will generally decrease during 
training, but when over-fitting starts to occur, error on the validation data will begin to increase, 
indicating training should stop. Then, the final model is applied to the test data to get a rough 
estimate of the model's accuracy. 

A relatively new technique to deal with over-fitting is called dropout training. As each training 
item is presented to the neural network, half of the hidden nodes are ignored. This prevents 
hidden nodes from co-adapting with each other, and results in a robust model that generalizes 
well. Drop-out training can also be applied to input nodes. A related idea is to add random noise 
to input values. This is sometimes called jittering. 

Neural networks with multiple layers of hidden nodes are often called deep neural networks. In 
theory, a neural network with a single, hidden layer can solve most classification problems. This 
is a consequence of what is known as the universal approximation theorem, or sometimes, 
Cybenko's theorem. However, for some problems, such as speech recognition, deep neural 
networks can be more effective than ordinary neural networks. 

The neural network presented in this chapter measured error using mean squared error. Some 
research evidence suggests an alternative measure, called cross entropy error, can generate 
more accurate neural network models. In my opinion, the research supporting the superiority of 
cross entropy error over mean squared error is fairly convincing, but the improvement gained by 
using cross entropy error is small. In spite of the apparent superiority of cross entropy error, the 
use of mean squared error seems to be more common. 

Ordinary neural networks are called feed-forward networks because when output values are 
computed, information flows from input nodes to hidden nodes to output nodes. It is possible to 
design neural networks where some or all of the hidden nodes have an additional connection 
that feeds back into themselves. These are called recurrent neural networks.  
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Chapter 5 Complete Demo Program Source Code 

using System; 
namespace NeuralClassification 
{ 
  class NeuralProgram 
  { 
    static void Main(string[] args) 
    { 
      Console.WriteLine("\nBegin neural network demo\n"); 
      Console.WriteLine("Goal is to predict species from color, petal length, width \n"); 
      Console.WriteLine("Raw data looks like: \n"); 
      Console.WriteLine("blue, 1.4, 0.3, setosa"); 
      Console.WriteLine("pink, 4.9, 1.5, versicolor"); 
      Console.WriteLine("teal, 5.6, 1.8, virginica \n"); 
 
      double[][] trainData = new double[24][]; 
      trainData[0] = new double[] { 1, 0, 1.4, 0.3, 1, 0, 0 }; 
      trainData[1] = new double[] { 0, 1, 4.9, 1.5, 0, 1, 0 }; 
      trainData[2] = new double[] { -1, -1, 5.6, 1.8, 0, 0, 1 }; 
      trainData[3] = new double[] { -1, -1, 6.1, 2.5, 0, 0, 1 }; 
      trainData[4] = new double[] { 1, 0, 1.3, 0.2, 1, 0, 0 }; 
      trainData[5] = new double[] { 0, 1, 1.4, 0.2, 1, 0, 0 }; 
      trainData[6] = new double[] { 1, 0, 6.6, 2.1, 0, 0, 1 }; 
      trainData[7] = new double[] { 0, 1, 3.3, 1.0, 0, 1, 0 }; 
      trainData[8] = new double[] { -1, -1, 1.7, 0.4, 1, 0, 0 }; 
      trainData[9] = new double[] { 0, 1, 1.5, 0.1, 0, 1, 1 }; 
      trainData[10] = new double[] { 0, 1, 1.4, 0.2, 1, 0, 0 }; 
      trainData[11] = new double[] { 0, 1, 4.5, 1.5, 0, 1, 0 }; 
      trainData[12] = new double[] { 1, 0, 1.4, 0.2, 1, 0, 0 }; 
      trainData[13] = new double[] { -1, -1, 5.1, 1.9, 0, 0, 1 }; 
      trainData[14] = new double[] { 1, 0, 6.0, 2.5, 0, 0, 1 }; 
      trainData[15] = new double[] { 1, 0, 3.9, 1.4, 0, 1, 0 }; 
      trainData[16] = new double[] { 0, 1, 4.7, 1.4, 0, 1, 0 }; 
      trainData[17] = new double[] { -1, -1, 4.6, 1.5, 0, 1, 0 }; 
      trainData[18] = new double[] { -1, -1, 4.5, 1.7, 0, 0, 1 }; 
      trainData[19] = new double[] { 0, 1, 4.5, 1.3, 0, 1, 0 }; 
      trainData[20] = new double[] { 1, 0, 1.5, 0.2, 1, 0, 0 }; 
      trainData[21] = new double[] { 0, 1, 5.8, 2.2, 0, 0, 1 }; 
      trainData[22] = new double[] { 0, 1, 4.0, 1.3, 0, 1, 0 }; 
      trainData[23] = new double[] { -1, -1, 5.8, 1.8, 0, 0, 1 }; 
 
      double[][] testData = new double[6][]; 
      testData[0] = new double[] { 1, 0, 1.5, 0.2, 1, 0, 0 }; 
      testData[1] = new double[] { -1, -1, 5.9, 2.1, 0, 0, 1 }; 
      testData[2] = new double[] { 0, 1, 1.4, 0.2, 1, 0, 0 }; 
      testData[3] = new double[] { 0, 1, 4.7, 1.6, 0, 1, 0 }; 
      testData[4] = new double[] { 1, 0, 4.6, 1.3, 0, 1, 0 }; 
      testData[5] = new double[] { 1, 0, 6.3, 1.8, 0, 0, 1 }; 
 
      Console.WriteLine("Encoded training data is: \n"); 
      ShowData(trainData, 5, 1, true); 
 
      Console.WriteLine("Encoded test data is: \n"); 
      ShowData(testData, 2, 1, true); 
 
      Console.WriteLine("\nCreating a 4-input, 6-hidden, 3-output neural network"); 
      Console.WriteLine("Using tanh and softmax activations \n"); 
      int numInput = 4; 
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      int numHidden = 6; 
      int numOutput = 3; 
      NeuralNetwork nn = new NeuralNetwork(numInput, numHidden, numOutput); 
 
      int numParticles = 12; 
      int maxEpochs = 500; 
  
      Console.WriteLine("Setting numParticles = " + numParticles); 
      Console.WriteLine("Setting maxEpochs = " + maxEpochs); 
 
      Console.WriteLine("\nBeginning training using Particle Swarm Optimization"); 
      double[] bestWeights = nn.Train(trainData, numParticles, maxEpochs); 
      Console.WriteLine("Training complete \n"); 
      Console.WriteLine("Final neural network weights and bias values:"); 
      ShowVector(bestWeights, 10, 3, true); 
 
      nn.SetWeights(bestWeights); 
      double trainAcc = nn.Accuracy(trainData); 
      Console.WriteLine("\nAccuracy on training data = " + trainAcc.ToString("F4")); 
 
      double testAcc = nn.Accuracy(testData); 
      Console.WriteLine("Accuracy on test data = " + testAcc.ToString("F4")); 
 
      Console.WriteLine("\nEnd neural network demo\n"); 
      Console.ReadLine(); 
    } // Main 
 
    static void ShowVector(double[] vector, int valsPerRow, int decimals, bool newLine) 
    { 
      for (int i = 0; i < vector.Length; ++i) 
      { 
        if (i % valsPerRow == 0) Console.WriteLine(""); 
        Console.Write(vector[i].ToString("F" + decimals).PadLeft(decimals + 4) + " "); 
      } 
      if (newLine == true) Console.WriteLine(""); 
    } 
 
    static void ShowData(double[][] data, int numRows, int decimals, bool indices) 
    { 
      for (int i = 0; i < numRows; ++i) 
      { 
        if (indices == true) 
          Console.Write("[" + i.ToString().PadLeft(2) + "]  "); 
        for (int j = 0; j < data[i].Length; ++j) 
        { 
          double v = data[i][j]; 
          if (v >= 0.0) 
            Console.Write(" "); // '+' 
          Console.Write(v.ToString("F" + decimals) + "    "); 
        } 
        Console.WriteLine(""); 
      } 
      Console.WriteLine(". . ."); 
      int lastRow = data.Length - 1; 
      if (indices == true) 
        Console.Write("[" + lastRow.ToString().PadLeft(2) + "]  "); 
      for (int j = 0; j < data[lastRow].Length; ++j) 
      { 
        double v = data[lastRow][j]; 
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        if (v >= 0.0) 
          Console.Write(" "); // '+' 
        Console.Write(v.ToString("F" + decimals) + "    "); 
      } 
      Console.WriteLine("\n"); 
    } 
  } // Program 
 
  public class NeuralNetwork 
  { 
    private int numInput; // number of input nodes 
    private int numHidden; 
    private int numOutput; 
 
    private double[] inputs; 
    private double[][] ihWeights; // input-hidden 
    private double[] hBiases; 
    private double[] hOutputs; 
 
    private double[][] hoWeights; // hidden-output 
    private double[] oBiases; 
    private double[] outputs; 
 
    private Random rnd; 
 
    public NeuralNetwork(int numInput, int numHidden, int numOutput) 
    { 
      this.numInput = numInput; 
      this.numHidden = numHidden; 
      this.numOutput = numOutput; 
      this.inputs = new double[numInput]; 
      this.ihWeights = MakeMatrix(numInput, numHidden); 
      this.hBiases = new double[numHidden]; 
      this.hOutputs = new double[numHidden]; 
      this.hoWeights = MakeMatrix(numHidden, numOutput); 
      this.oBiases = new double[numOutput]; 
      this.outputs = new double[numOutput]; 
      this.rnd = new Random(0);  
    } // ctor 
 
    private static double[][] MakeMatrix(int rows, int cols) // helper for ctor 
    { 
      double[][] result = new double[rows][]; 
      for (int r = 0; r < result.Length; ++r) 
        result[r] = new double[cols]; 
      return result; 
    } 
 
    public void SetWeights(double[] weights) 
    { 
      // copy weights and biases in weights[] array to i-h weights, 
      // i-h biases, h-o weights, h-o biases 
      int numWeights = (numInput * numHidden) + (numHidden * numOutput) + 
        numHidden + numOutput; 
      if (weights.Length != numWeights) 
        throw new Exception("Bad weights array length: "); 
 
      int k = 0; // points into weights param 
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      for (int i = 0; i < numInput; ++i) 
        for (int j = 0; j < numHidden; ++j) 
          ihWeights[i][j] = weights[k++]; 
      for (int i = 0; i < numHidden; ++i) 
        hBiases[i] = weights[k++]; 
      for (int i = 0; i < numHidden; ++i) 
        for (int j = 0; j < numOutput; ++j) 
          hoWeights[i][j] = weights[k++]; 
      for (int i = 0; i < numOutput; ++i) 
        oBiases[i] = weights[k++]; 
    } 
 
    public double[] ComputeOutputs(double[] xValues) 
    { 
      double[] hSums = new double[numHidden]; // hidden nodes sums scratch array 
      double[] oSums = new double[numOutput]; // output nodes sums 
 
      for (int i = 0; i < xValues.Length; ++i) // copy x-values to inputs 
        this.inputs[i] = xValues[i]; 
 
      for (int j = 0; j < numHidden; ++j)  // compute i-h sum of weights * inputs 
        for (int i = 0; i < numInput; ++i) 
          hSums[j] += this.inputs[i] * this.ihWeights[i][j]; // note += 
 
      for (int i = 0; i < numHidden; ++i)  // add biases to input-to-hidden sums 
        hSums[i] += this.hBiases[i]; 
 
      for (int i = 0; i < numHidden; ++i)   // apply activation 
        this.hOutputs[i] = HyperTan(hSums[i]); // hard-coded 
 
      for (int j = 0; j < numOutput; ++j)   // compute h-o sum of weights * hOutputs 
        for (int i = 0; i < numHidden; ++i) 
          oSums[j] += hOutputs[i] * hoWeights[i][j]; 
 
      for (int i = 0; i < numOutput; ++i)  // add biases to input-to-hidden sums 
        oSums[i] += oBiases[i]; 
 
      double[] softOut = Softmax(oSums); // all outputs at once for efficiency 
      Array.Copy(softOut, outputs, softOut.Length); 
 
      double[] retResult = new double[numOutput];  
      Array.Copy(this.outputs, retResult, retResult.Length); 
      return retResult; 
    }  
 
    private static double HyperTan(double x) 
    { 
      if (x < -20.0)  
        return -1.0; // approximation is correct to 30 decimals 
      else if (x > 20.0) 
        return 1.0; 
      else 
        return Math.Tanh(x); 
    } 
 
    private static double[] Softmax(double[] oSums) 
    { 
      // does all output nodes at once so scale doesn't have to be re-computed each time 
      // determine max output-sum 
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      double max = oSums[0]; 
      for (int i = 0; i < oSums.Length; ++i) 
        if (oSums[i] > max) max = oSums[i]; 
 
      // determine scaling factor -- sum of exp(each val - max) 
      double scale = 0.0; 
      for (int i = 0; i < oSums.Length; ++i) 
        scale += Math.Exp(oSums[i] - max); 
 
      double[] result = new double[oSums.Length]; 
      for (int i = 0; i < oSums.Length; ++i) 
        result[i] = Math.Exp(oSums[i] - max) / scale; 
 
      return result; // now scaled so that xi sum to 1.0 
    } 
 
    public double[] Train(double[][] trainData, int numParticles, int maxEpochs) 
    { 
      int numWeights = (this.numInput * this.numHidden) + this.numHidden + 
        (this.numHidden * this.numOutput) + this.numOutput; 
 
      // use PSO to seek best weights 
      int epoch = 0; 
      double minX = -10.0; // for each weight. assumes data is normalized or 'nice' 
      double maxX = 10.0; 
      double w = 0.729; // inertia weight 
      double c1 = 1.49445; // cognitive weight 
      double c2 = 1.49445; // social weight 
      double r1, r2; // cognitive and social randomizations 
 
      Particle[] swarm = new Particle[numParticles]; 
      // best solution found by any particle in the swarm 
      double[] bestGlobalPosition = new double[numWeights]; 
      double bestGlobalError = double.MaxValue; // smaller values better 
 
      // initialize each Particle in the swarm with random positions and velocities 
      double lo = 0.1 * minX; 
      double hi = 0.1 * maxX; 
      for (int i = 0; i < swarm.Length; ++i) 
      { 
        double[] randomPosition = new double[numWeights]; 
        for (int j = 0; j < randomPosition.Length; ++j) 
          randomPosition[j] = (maxX - minX) * rnd.NextDouble() + minX; 
 
        double error = MeanSquaredError(trainData, randomPosition); 
        double[] randomVelocity = new double[numWeights]; 
 
        for (int j = 0; j < randomVelocity.Length; ++j) 
          randomVelocity[j] = (hi - lo) * rnd.NextDouble() + lo; 
 
        swarm[i] = new Particle(randomPosition, error, randomVelocity, 
          randomPosition, error); 
 
        // does current Particle have global best position/solution? 
        if (swarm[i].error < bestGlobalError) 
        { 
          bestGlobalError = swarm[i].error; 
          swarm[i].position.CopyTo(bestGlobalPosition, 0); 
        } 
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      } 
 
      // main PSO algorithm 
      int[] sequence = new int[numParticles]; // process particles in random order 
      for (int i = 0; i < sequence.Length; ++i) 
        sequence[i] = i; 
 
      while (epoch < maxEpochs) 
      { 
        double[] newVelocity = new double[numWeights]; // step 1 
        double[] newPosition = new double[numWeights]; // step 2 
        double newError; // step 3 
 
        Shuffle(sequence); // move particles in random sequence 
 
        for (int pi = 0; pi < swarm.Length; ++pi) // each Particle (index) 
        { 
          int i = sequence[pi]; 
          Particle currP = swarm[i]; // for coding convenience 
 
          // 1. compute new velocity 
          for (int j = 0; j < currP.velocity.Length; ++j) // each value of the velocity 
          { 
            r1 = rnd.NextDouble(); 
            r2 = rnd.NextDouble(); 
 
            // velocity depends on old velocity, best position of particle, and  
            // best position of any particle 
            newVelocity[j] = (w * currP.velocity[j]) + 
              (c1 * r1 * (currP.bestPosition[j] - currP.position[j])) + 
              (c2 * r2 * (bestGlobalPosition[j] - currP.position[j])); 
          } 
          newVelocity.CopyTo(currP.velocity, 0); 
 
          // 2. use new velocity to compute new position 
          for (int j = 0; j < currP.position.Length; ++j) 
          { 
            newPosition[j] = currP.position[j] + newVelocity[j];  
            if (newPosition[j] < minX) // keep in range 
              newPosition[j] = minX; 
            else if (newPosition[j] > maxX) 
              newPosition[j] = maxX; 
          } 
          newPosition.CopyTo(currP.position, 0); 
 
          // 3. compute error of new position 
          newError = MeanSquaredError(trainData, newPosition); 
          currP.error = newError; 
 
          if (newError < currP.bestError) // new particle best? 
          { 
            newPosition.CopyTo(currP.bestPosition, 0); 
            currP.bestError = newError; 
          } 
 
          if (newError < bestGlobalError) // new global best? 
          { 
            newPosition.CopyTo(bestGlobalPosition, 0); 
            bestGlobalError = newError; 
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          } 
        } // each Particle 
        ++epoch; 
      } // while 
 
      SetWeights(bestGlobalPosition);  // best position is a set of weights 
      double[] retResult = new double[numWeights]; 
      Array.Copy(bestGlobalPosition, retResult, retResult.Length); 
      return retResult; 
    } // Train 
 
    private void Shuffle(int[] sequence) 
    { 
      for (int i = 0; i < sequence.Length; ++i) 
      { 
        int ri = rnd.Next(i, sequence.Length); 
        int tmp = sequence[ri]; 
        sequence[ri] = sequence[i]; 
        sequence[i] = tmp; 
      } 
    } 
 
    private double MeanSquaredError(double[][] trainData, double[] weights) 
    { 
      this.SetWeights(weights); // copy the weights to evaluate in 
 
      double[] xValues = new double[numInput]; // inputs 
      double[] tValues = new double[numOutput]; // targets 
      double sumSquaredError = 0.0; 
      for (int i = 0; i < trainData.Length; ++i) // walk through each training item 
      { 
        // the following assumes data has all x-values first, followed by y-values! 
        Array.Copy(trainData[i], xValues, numInput); // extract inputs 
        Array.Copy(trainData[i], numInput, tValues, 0, numOutput); // extract targets 
        double[] yValues = this.ComputeOutputs(xValues);  
        for (int j = 0; j < yValues.Length; ++j) 
          sumSquaredError += ((yValues[j] - tValues[j]) * (yValues[j] - tValues[j])); 
      } 
      return sumSquaredError / trainData.Length; 
    } 
 
    public double Accuracy(double[][] testData) 
    { 
      // percentage correct using winner-takes all 
      int numCorrect = 0; 
      int numWrong = 0; 
      double[] xValues = new double[numInput]; // inputs 
      double[] tValues = new double[numOutput]; // targets 
      double[] yValues; // computed Y 
 
      for (int i = 0; i < testData.Length; ++i) 
      { 
        Array.Copy(testData[i], xValues, numInput); // parse test data 
        Array.Copy(testData[i], numInput, tValues, 0, numOutput); 
        yValues = this.ComputeOutputs(xValues); 
        int maxIndex = MaxIndex(yValues); // which cell in yValues has largest value? 
 
        if (tValues[maxIndex] == 1.0) // ugly 
          ++numCorrect; 
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        else 
          ++numWrong; 
      } 
      return (numCorrect * 1.0) / (numCorrect + numWrong);  
    } 
 
    private static int MaxIndex(double[] vector) // helper for Accuracy() 
    { 
      // index of largest value 
      int bigIndex = 0; 
      double biggestVal = vector[0]; 
      for (int i = 0; i < vector.Length; ++i) 
      { 
        if (vector[i] > biggestVal) 
        { 
          biggestVal = vector[i];  
          bigIndex = i; 
        } 
      } 
      return bigIndex; 
    } 
 
    // ---------------------------------------------- 
    private class Particle 
    { 
      public double[] position; // equivalent to NN weights 
      public double error; // measure of fitness 
      public double[] velocity; 
 
      public double[] bestPosition; // best position found by this Particle 
      public double bestError; 
 
      public Particle(double[] position, double error, double[] velocity, 
        double[] bestPosition, double bestError) 
      { 
        this.position = new double[position.Length]; 
        position.CopyTo(this.position, 0); 
        this.error = error; 
        this.velocity = new double[velocity.Length]; 
        velocity.CopyTo(this.velocity, 0); 
        this.bestPosition = new double[bestPosition.Length]; 
        bestPosition.CopyTo(this.bestPosition, 0); 
        this.bestError = bestError; 
      } 
    } 
    // ---------------------------------------------- 
 
  } // NeuralNetwork 
} // ns 
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