

2

Machine Learning

Using C# Succinctly

By

James McCaffrey

Foreword by Daniel Jebaraj

3

Copyright © 2014 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: Chris Lee

Copy Editor: Courtney Wright

Acquisitions Coordinator: Hillary Bowling, marketing coordinator, Syncfusion, Inc.

Proofreader: Graham High, content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

The Story behind the Succinctly Series of Books ... 7

About the Author ... 9

Acknowledgements .. 10

Chapter 1 k-Means Clustering .. 11

Introduction .. 11

Understanding the k-Means Algorithm .. 13

Demo Program Overall Structure .. 15

Loading Data from a Text File.. 18

The Key Data Structures.. 20

The Clusterer Class ... 21

The Cluster Method ... 23

Clustering Initialization ... 25

Updating the Centroids .. 26

Updating the Clustering ... 27

Summary .. 30

Chapter 1 Complete Demo Program Source Code ... 31

Chapter 2 Categorical Data Clustering .. 36

Introduction .. 36

Understanding Category Utility .. 37

Understanding the GACUC Algorithm ... 40

Demo Program Overall Structure .. 41

The Key Data Structures.. 44

The CatClusterer Class .. 45

The Cluster Method ... 46

5

The CategoryUtility Method ... 48

Clustering Initialization ... 49

Reservoir Sampling .. 51

Clustering Mixed Data .. 52

Chapter 2 Complete Demo Program Source Code ... 54

Chapter 3 Logistic Regression Classification .. 61

Introduction .. 61

Understanding Logistic Regression Classification ... 63

Demo Program Overall Structure .. 65

Data Normalization .. 69

Creating Training and Test Data .. 71

Defining the LogisticClassifier Class .. 73

Error and Accuracy .. 75

Understanding Simplex Optimization ... 78

Training .. 80

Other Scenarios ... 85

Chapter 3 Complete Demo Program Source Code ... 87

Chapter 4 Naive Bayes Classification .. 95

Introduction .. 95

Understanding Naive Bayes .. 97

Demo Program Structure ... 100

Defining the BayesClassifer Class ... 104

The Training Method .. 106

Method Probability ... 108

Method Accuracy ... 111

Converting Numeric Data to Categorical Data... 112

Comments .. 114

6

Chapter 4 Complete Demo Program Source Code ... 115

Chapter 5 Neural Network Classification ... 122

Introduction .. 122

Understanding Neural Network Classification ... 124

Demo Program Overall Structure .. 126

Defining the NeuralNetwork Class ... 130

Understanding Particle Swarm Optimization ... 133

Training using PSO .. 135

Other Scenarios ... 140

Chapter 5 Complete Demo Program Source Code ... 141

7

 The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

8

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

 Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

9

About the Author

James McCaffrey works for Microsoft Research in Redmond, WA. He holds a B.A. in
psychology from the University of California at Irvine, a B.A. in applied mathematics from
California State University at Fullerton, an M.S. in information systems from Hawaii Pacific
University, and a doctorate from the University of Southern California. James enjoys exploring
all forms of activity that involve human interaction and combinatorial mathematics, such as the
analysis of betting behavior associated with professional sports, machine learning algorithms,
and data mining.

10

Acknowledgements

My thanks to all the people who contributed to this book. The Syncfusion team conceived the
idea for this book and then made it happen—Hillary Bowling, Graham High, and Tres Watkins.
The lead technical editor, Chris Lee, thoroughly reviewed the book's organization, code quality,
and calculation accuracy. Several of my colleagues at Microsoft acted as technical and editorial
reviewers, and provided many helpful suggestions for improving the book in areas such as
overall correctness, coding style, readability, and implementation alternatives—many thanks to
Jamilu Abubakar, Todd Bello, Cyrus Cousins, Marciano Moreno Diaz Covarrubias, Suraj Jain,
Tomasz Kaminski, Sonja Knoll, Rick Lewis, Chen Li, Tom Minka, Tameem Ansari Mohammed,
Delbert Murphy, Robert Musson, Paul Roy Owino, Sayan Pathak, David Raskino, Robert
Rounthwaite, Zhefu Shi, Alisson Sol, Gopal Srinivasa, and Liang Xie.

J.M.

11

Chapter 1 k-Means Clustering

Introduction

Data clustering is the process of placing data items into groups so that similar items are in the
same group (cluster) and dissimilar items are in different groups. After a data set has been
clustered, it can be examined to find interesting patterns. For example, a data set of sales
transactions might be clustered and then inspected to see if there are differences between the
shopping patterns of men and women.

There are many different clustering algorithms. One of the most common is called the k-means
algorithm. A good way to gain an understanding of the k-means algorithm is to examine the
screenshot of the demo program shown in Figure 1-a. The demo program groups a data set of
10 items into three clusters. Each data item represents the height (in inches) and weight (in
kilograms) of a person.

The data set was artificially constructed so that the items clearly fall into three distinct clusters.
But even with only 10 simple data items that have only two values each, it is not immediately
obvious which data items are similar:

(73.0, 72.6)
(61.0, 54.4)
(67.0, 99.9)
(68.0, 97.3)
(62.0, 59.0)
(75.0, 81.6)
(74.0, 77.1)
(66.0, 97.3)
(68.0, 93.3)
(61.0, 59.0)

However, after k-means clustering, it is clear that there are three distinct groups that might be
labeled "medium-height and heavy", "tall and medium-weight", and "short and light":

(67.0, 99.9)
(68.0, 97.3)
(66.0, 97.3)
(68.0, 93.3)

(73.0, 72.6)
(75.0, 81.6)
(74.0, 77.1)

(61.0, 54.4)
(62.0, 59.0)
(61.0, 59.0)

The k-means algorithm works only with strictly numeric data. Each data item in the demo has
two numeric components (height and weight), but k-means can handle data items with any
number of values, for example, (73.0, 72.6, 98.6), where the third value is body temperature.

12

Figure 1-a: The k-Means Algorithm in Action

Notice that in the demo program, the number of clusters (the k in k-means) was set to 3. Most
clustering algorithms, including k-means, require that the user specify the number of clusters, as
opposed to the program automatically finding an optimal number of clusters. The k-means
algorithm is an example of what is called an unsupervised machine learning technique because
the algorithm works directly on the entire data set, without any special training items (with
cluster membership pre-specified) required.

13

The demo program initially assigns each data tuple randomly to one of the three cluster IDs.
After the clustering process finished, the demo displays the resulting clustering: { 1, 2, 0, 0, 2, 1,
1, 0, 0, 2 }, which means data item 0 is assigned to cluster 1, data item 1 is assigned to cluster
2, data item 2 is assigned to cluster 0, data item 3 is assigned to cluster 0, and so on.

Understanding the k-Means Algorithm

A naive approach to clustering numeric data would be to examine all possible groupings of the
source data set and then determine which of those groupings is best. There are two problems
with this approach. First, the number of possible groupings of a data set grows astronomically
large, very quickly. For example, the number of ways to cluster n = 50 into k = 3 groups is:

119,649,664,052,358,811,373,730

Even if you could somehow examine one billion groupings (also called partitions) per second, it
would take you well over three million years of computing time to analyze all possibilities. The
second problem with this approach is that there are several ways to define exactly what is
meant by the best clustering of a data set.

There are many variations of the k-means algorithm. The basic k-means algorithm, sometimes
called Lloyd's algorithm, is remarkably simple. Expressed in high-level pseudo-code, k-means
clustering is:

randomly assign all data items to a cluster
loop until no change in cluster assignments
 compute centroids for each cluster
 reassign each data item to cluster of closest centroid
end

Even though the pseudo-code is very short and simple, k-means is somewhat subtle and best
explained using pictures. The left-hand image in Figure 1-b is a graph of the 10 height-weight
data items in the demo program. Notice an optimal clustering is quite obvious. The right image
in the figure shows one possible random initial clustering of the data, where color (red, yellow,
green) indicates cluster membership.

Figure 1-b: k-Means Problem and Cluster Initialization

14

After initializing cluster assignments, the centroids of each cluster are computed as shown in the
left-hand graph in Figure 1-c. The three large dots are centroids. The centroid of the data items
in a cluster is essentially an average item. For example, you can see that the four data items
assigned to the red cluster are slightly to the left, and slightly below, the center of all the data
points.

There are several other clustering algorithms that are similar to the k-means algorithm but use a
different definition of a centroid item. This is why the k-means is named "k-means" rather than
"k-centroids."

Figure 1-c: Compute Centroids and Reassign Clusters

After the centroids of each cluster are computed, the k-means algorithm scans each data item
and reassigns each to the cluster that is associated with the closet centroid, as shown in the
right-hand graph in Figure 1-c. For example, the three data points in the lower left part of the
graph are clearly closest to the red centroid, so those three items are assigned to the red
cluster.

The k-means algorithm continues iterating the update-centroids and update-clustering process
as shown in Figure 1-d. In general, the k-means algorithm will quickly reach a state where there
are no changes to cluster assignments, as shown in the right-hand graph in Figure 1-d.

Figure 1-d: Update-Centroids and Update-Clustering Until No Change

15

The preceding explanation of the k-means algorithm leaves out some important details. For
example, just how are data items initially assigned to clusters? Exactly what does it mean for a
cluster centroid to be closest to a data item? Is there any guarantee that the update-centroids,
update-clustering loop will exit?

Demo Program Overall Structure

To create the demo, I launched Visual Studio and selected the new C# console application
template. The demo has no significant .NET version dependencies, so any version of Visual
Studio should work.

After the template code loaded into the editor, I removed all using statements at the top of the

source code, except for the single reference to the top-level System namespace. In the Solution
Explorer window, I renamed the Program.cs file to the more descriptive ClusterProgram.cs, and
Visual Studio automatically renamed class Program to ClusterProgram.

The overall structure of the demo program, with a few minor edits to save space, is presented in
Listing 1-a. Note that in order to keep the size of the example code small, and the main ideas
as clear as possible, the demo programs violate typical coding style guidelines and omit error
checking that would normally be used in production code. The demo program class has three
static helper methods. Method ShowData displays the raw source data items.

using System;
namespace ClusterNumeric
{
 class ClusterProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("\nBegin k-means clustering demo\n");

 double[][] rawData = new double[10][];
 rawData[0] = new double[] { 73, 72.6 };
 rawData[1] = new double[] { 61, 54.4 };
 // etc.
 rawData[9] = new double[] { 61, 59.0 };

 Console.WriteLine("Raw unclustered data:\n");
 Console.WriteLine(" ID Height (in.) Weight (kg.)");
 Console.WriteLine("---------------------------------");
 ShowData(rawData, 1, true, true);

 int numClusters = 3;
 Console.WriteLine("\nSetting numClusters to " + numClusters);

 Console.WriteLine("\nStarting clustering using k-means algorithm");
 Clusterer c = new Clusterer(numClusters);
 int[] clustering = c.Cluster(rawData);
 Console.WriteLine("Clustering complete\n");

 Console.WriteLine("Final clustering in internal form:\n");
 ShowVector(clustering, true);

 Console.WriteLine("Raw data by cluster:\n");

16

 ShowClustered(rawData, clustering, numClusters, 1);

 Console.WriteLine("\nEnd k-means clustering demo\n");
 Console.ReadLine();
 }

 static void ShowData(double[][] data, int decimals, bool indices,
 bool newLine) { . . }
 static void ShowVector(int[] vector, bool newLine) { . . }
 static void ShowClustered(double[][] data, int[] clustering,
 int numClusters, int decimals) { . . }
 }

 public class Clusterer { . . }

} // ns

Listing 1-a: k-Means Demo Program Structure

Helper ShowVector displays the internal clustering representation, and method ShowClustered
displays the source data after it has been clustered, grouped by cluster.

All the clustering logic is contained in a single program-defined class named Clusterer. All the
program logic is contained in the Main method. The Main method begins by setting up 10 hard-
coded, height-weight data items in an array-of-arrays style matrix:

static void Main(string[] args)
{
 Console.WriteLine("\nBegin k-means clustering demo\n");
 double[][] rawData = new double[10][];
 rawData[0] = new double[] { 73, 72.6 };
. . .

In a non-demo scenario, you would likely have data stored in a text file, and would load the data
into memory using a helper function, as described in the next section. The Main method
displays the raw data like so:

Console.WriteLine("Raw unclustered data:\n");
Console.WriteLine(" ID Height (in.) Weight (kg.)");
Console.WriteLine("---------------------------------");
ShowData(rawData, 1, true, true);

The four arguments to method ShowData are the matrix of type double to display, the number of
decimals to display for each value, a Boolean flag to display indices or not, and a Boolean flag
to print a final new line or not. Method ShowData is defined in Listing 1-b.

static void ShowData(double[][] data, int decimals, bool indices, bool newLine)
{
 for (int i = 0; i < data.Length; ++i)
 {
 if (indices == true)
 Console.Write(i.ToString().PadLeft(3) + " ");
 for (int j = 0; j < data[i].Length; ++j)

17

 {
 double v = data[i][j];
 Console.Write(v.ToString("F" + decimals) + " ");
 }
 Console.WriteLine("");
 }
 if (newLine == true)
 Console.WriteLine("");
}

Listing 1-b: Displaying the Raw Data

One of many alternatives to consider is to pass to method ShowData an additional string array
parameter named something like "header" that contains column names, and then use that
information to display column headers.

In method Main, the calling interface to the clustering routine is very simple:

int numClusters = 3;
Console.WriteLine("\nSetting numClusters to " + numClusters);
Console.WriteLine("\nStarting clustering using k-means algorithm");
Clusterer c = new Clusterer(numClusters);
int[] clustering = c.Cluster(rawData);
Console.WriteLine("Clustering complete\n");

The program-defined Clusterer constructor accepts a single argument, which is the number of
clusters to assign the data items to. The Cluster method accepts a matrix of data items and
returns the resulting clustering in the form of an integer array, where the array index value is the
index of a data item, and the array cell value is a cluster ID. In the screenshot in Figure 1-a, the
return array has the following values:

{ 1, 2, 0, 0, 2, 1, 0, 0, 2 }

This means data item [0], which is (73.0, 72.6), is assigned to cluster 1, data [1] is assigned to
cluster 2, data [2] is assigned to cluster 0, data [3] is assigned to cluster 0, and so on.

The Main method finishes by displaying the clustering, and displaying the source data grouped
by cluster ID:

. . .
 Console.WriteLine("Final clustering in internal form:\n");
 ShowVector(clustering, true);

 Console.WriteLine("Raw data by cluster:\n");
 ShowClustered(rawData, clustering, numClusters, 1);

 Console.WriteLine("\nEnd k-means clustering demo\n");
 Console.ReadLine();
}

Helper method ShowVector is defined:

static void ShowVector(int[] vector, bool newLine)

18

{
 for (int i = 0; i < vector.Length; ++i)
 Console.Write(vector[i] + " ");
 if (newLine == true) Console.WriteLine("\n");
}

An alternative to relying on a static helper method to display the clustering result is to define a
class ToString method along the lines of:

Console.WriteLine(c.ToString()); // display clustering[]

Helper method ShowClustered displays the source data in clustered form and is presented in
Listing 1-c. Method ShowClustered makes multiple passes through the data set that has been
clustered. A more efficient, but significantly more complicated alternative, is to define a local
data structure, such as an array of List objects, and then make a first, single pass through the
data, storing the clusterIDs associated with each data item. Then a second, single pass through
the data structure could print the data in clustered form.

static void ShowClustered(double[][] data, int[] clustering, int numClusters,
 int decimals)
{
 for (int k = 0; k < numClusters; ++k)
 {
 Console.WriteLine("===================");
 for (int i = 0; i < data.Length; ++i)
 {
 int clusterID = clustering[i];
 if (clusterID != k) continue;
 Console.Write(i.ToString().PadLeft(3) + " ");
 for (int j = 0; j < data[i].Length; ++j)
 {
 double v = data[i][j];
 Console.Write(v.ToString("F" + decimals) + " ");
 }
 Console.WriteLine("");
 }
 Console.WriteLine("===================");
 } // k
}

Listing 1-c: Displaying the Data in Clustered Form

An alternative to using a static method to display the clustered data is to implement a class
member ToString method to do so.

Loading Data from a Text File

In non-demo scenarios, the data to be clustered is usually stored in a text file. For example,
suppose the 10 data items in the demo program were stored in a comma-delimited text file,
without a header line, named HeightWeight.txt like so:

19

73.0,72.6
61.0,54.4
. . .
61.0,59.0

One possible implementation of a LoadData method is presented in Listing 1-d. As defined,
method LoadData accepts input parameters numRows and numCols for the number of rows and

columns in the data file. In general, when working with machine learning, information like this is
usually known.

static double[][] LoadData(string dataFile, int numRows, int numCols, char delimit)
{
 System.IO.FileStream ifs = new System.IO.FileStream(dataFile, System.IO.FileMode.Open);
 System.IO.StreamReader sr = new System.IO.StreamReader(ifs);
 string line = "";
 string[] tokens = null;
 int i = 0;
 double[][] result = new double[numRows][];
 while ((line = sr.ReadLine()) != null)
 {
 result[i] = new double[numCols];
 tokens = line.Split(delimit);
 for (int j = 0; j < numCols; ++j)
 result[i][j] = double.Parse(tokens[j]);
 ++i;
 }
 sr.Close();
 ifs.Close();
 return result;
}

Listing 1-d: Loading Data from a Text File

Calling method LoadData would look something like:

string dataFile = "..\\..\\HeightWeight.txt";
double[][] rawData = LoadData(dataFile, 10, 2, ',');

An alternative is to programmatically scan the data for the number of rows and columns. In
pseudo-code it would look like:

numRows := 0
open file
while not EOF
 numRows := numRows + 1
end loop
close file
allocate result array with numRows
open file
while not EOF
 read and parse line with numCols
 allocate curr row of array with numCols
 store line
end loop

20

close file
return result matrix

Note that even if you are a very experienced programmer, unless you work with scientific or
numerical problems often, you may not be familiar with C# array-of-arrays matrices. The matrix
coding syntax patterns can take a while to become accustomed to.

The Key Data Structures

The important data structures for the k-means clustering program are illustrated in Figure 1-e.
The array-of-arrays style matrix named data shows how the 10 height-weight data items

(sometimes called data tuples) are stored in memory. For example, data[2][0] holds the

height of the third person (67 inches) and data[2][1] holds the weight of the third person (99.9

kilograms). In code, data[2] represents the third row of the matrix, which is an array with two

cells that holds the height and weight of the third person. There is no convenient way to access
an entire column of an array-of-arrays style matrix.

Figure 1-e: k-Means Key Data Structures

Unlike many programming languages, C# supports true, multidimensional arrays. For example,
a matrix to hold the same values as the one shown in Figure 1-e could be declared and
accessed like so:

double[,] data = new double[10,2]; // 10 rows, 2 columns
data[0,0] = 73;
data[0,1] = 72.6;
. . .

However, using array-of-arrays style matrices is much more common in C# machine learning
scenarios, and is generally more convenient because entire rows can be easily accessed.

21

The demo program maintains an integer array named clustering to hold cluster assignment

information. The array indices (0, 1, 2, 3, . . 9) represent indices of the data items. The array cell
values { 2, 0, 1, . . 2 } represent the cluster IDs. So, in the figure, data item 0 (which is 73, 72.6)
is assigned to cluster 2. Data item 1 (which is 61, 54.4) is assigned to cluster 0. And so on.

There are many alternative ways to store cluster assignment information that trade off efficiency
and clarity. For example, you could use an array of List objects, where each List collection holds
the indices of data items that belong to the same cluster. As a general rule, the relationship
between a machine learning algorithm and the data structures used is very tight, and a change
to one of the data structures will require significant changes to the algorithm code.

In Figure 1-e, the array clusterCounts holds the number of data items that are assigned to a

cluster at any given time during the clustering process. The array indices (0, 1, 2) represent
cluster IDs, and the cell values { 3, 3, 4 } represent the number of data items. So, cluster 0 has
three data items assigned to it, cluster 1 also has three items, and cluster 2 has four data items.

In Figure 1-e, the array-of-arrays matrix centroids holds what you can think of as average

data items for each cluster. For example, the centroid of cluster 0 is { 67.67, 76.27 }. The three
data items assigned to cluster 0 are items 1, 3, and 6, which are { 61, 54.4 }, { 68, 97.3 } and
{ 74, 77.1 }. The centroid of a set of vectors is just a vector where each component is the
average of the set's values. For example:

centroid[0] = (61 + 68 + 74) / 3 , (54.4 + 97.3 + 77.1) / 3
 = 203 / 3 , 228.8 / 3
 = (67.67, 76.27)

Notice that like the close relationship between an algorithm and the data structures used, there
is a very tight coupling among the key data structures. Based on my experience with writing
machine learning code, it is essential (for me at least) to have a diagram of all data structures
used. Most of the coding bugs I generate are related to the data structures rather than the
algorithm logic.

The Clusterer Class

A program-defined class named Clusterer houses the k-means clustering algorithm code. The
structure of the class is presented in Listing 1-e.

public class Clusterer
{
 private int numClusters;
 private int[] clustering;
 private double[][] centroids;
 private Random rnd;

 public Clusterer(int numClusters) { . . }
 public int[] Cluster(double[][] data) { . . }
 private bool InitRandom(double[][] data, int maxAttempts) { . . }
 private static int[] Reservoir(int n, int range) { . . }
 private bool UpdateCentroids(double[][] data) { . . }
 private bool UpdateClustering(double[][] data) { . . }
 private static double Distance(double[] tuple, double[] centroid) { . . }

22

 private static int MinIndex(double[] distances) { . . }
}

Listing 1-e: Program-Defined Clusterer Class

Class Clusterer has four data members, two public methods, and six private helper methods.
Three of four data members—variable numClusters, array clustering, and matrix

centroids—are explained by the diagram in Figure 1-e. The fourth data member, rnd, is a

Random object used during the k-means initialization process.

Data member rnd is used to generate pseudo-random numbers when data items are initially

assigned to random clusters. In most clustering scenarios there is just a single clustering object,
but if multiple clustering objects are needed, you may want to consider decorating data member
rnd with the static keyword so that there is just a single random number generator shared

between clustering object instances.

Class Clusterer exposes just two public methods: a single class constructor, and a method
Cluster. Method Cluster calls private helper methods InitRandom, UpdateCentroids, and
UpdateClustering. Helper method UpdateClustering calls sub-helper static methods Distance
and MinIndex.

The class constructor is short and straightforward:

public Clusterer(int numClusters)
{
 this.numClusters = numClusters;
 this.centroids = new double[numClusters][];
 this.rnd = new Random(0);
}

The single input parameter, numClusters, is assigned to the class data member of the same

name. You may want to perform input error checking to make sure the value of parameter
numClusters is greater than or equal to 2. The ability to control when to omit error checking to

improve performance is an advantage of writing custom machine learning code.

The constructor allocates the rows of the data member matrix centroids, but cannot allocate

the columns because the number of columns will not be known until the data to be clustered is
presented. Similarly, array clustering cannot be allocated until the number of data items is

known. The Random object is initialized with a seed value of 0, which is arbitrary. Different seed
values can produce significantly different clustering results. A common design option is to pass
the seed value as an input parameter to the constructor.

If you refer back to Listing 1-a, the key calling code is:

int numClusters = 3;
Clusterer c = new Clusterer(numClusters);
int[] clustering = c.Cluster(rawData);

23

Notice the Clusterer class does not learn about the data to be clustered until that data is passed
to the Cluster method. An important alternative design is to include a reference to the data to be
clustered as a class member, and pass the reference to the class constructor. In other words,
the Clusterer class would contain an additional field:

private double[][] rawData;

And the constructor would then be:

public Clusterer(int numClusters, double[][] rawData)
{
 this.numClusters = numClusters;
 this.rawData = rawData;
 . . .
}

The pros and cons of this design alternative are a bit subtle. One advantage of including the
data to be clustered is that it leads to a slightly cleaner design. In my opinion, the two design
approaches have roughly equal merit. The decision of whether to pass data to a class
constructor or to a public method is a recurring theme when creating custom machine learning
code.

The Cluster Method

Method Cluster is presented in Listing 1-f. The method accepts a reference to the data to be
clustered, which is stored in an array-of-arrays style matrix.

public int[] Cluster(double[][] data)
{
 int numTuples = data.Length;
 int numValues = data[0].Length;
 this.clustering = new int[numTuples];

 for (int k = 0; k < numClusters; ++k)
 this.centroids[k] = new double[numValues];

 InitRandom(data);

 Console.WriteLine("\nInitial random clustering:");
 for (int i = 0; i < clustering.Length; ++i)
 Console.Write(clustering[i] + " ");
 Console.WriteLine("\n");

 bool changed = true; // change in clustering?
 int maxCount = numTuples * 10; // sanity check
 int ct = 0;
 while (changed == true && ct < maxCount)
 {
 ++ct;
 UpdateCentroids(data);
 changed = UpdateClustering(data);
 }

 int[] result = new int[numTuples];

24

 Array.Copy(this.clustering, result, clustering.Length);
 return result;
}

Listing 1-f: The Cluster Method

The definition of method Cluster begins with:

public int[] Cluster(double[][] data)
{
 int numTuples = data.Length;
 int numValues = data[0].Length;
 this.clustering = new int[numTuples];
. . .

The first two statements determine the number of data items to be clustered and the number of
values in each data item. Strictly speaking, these two variables are unnecessary, but using them
makes the code somewhat easier to understand. Recall that class member array clustering

and member matrix centroids could not be allocated in the constructor because the size of the

data to be clustered was not known. So, clustering and centroids are allocated in method

Cluster when the data is first known.

Next, the columns of the data member matrix centroids are allocated:

for (int k = 0; k < numClusters; ++k)
 this.centroids[k] = new double[numValues];

Here, class member centroids is referenced using the this keyword, but member

numClusters is referenced without the keyword. In a production environment, you would likely

use a standardized coding style.

Next, method Cluster initializes the clustering with random assignments by calling helper
method InitRandom:

InitRandom(data);
Console.WriteLine("\nInitial random clustering:");
for (int i = 0; i < clustering.Length; ++i)
 Console.Write(clustering[i] + " ");
Console.WriteLine("\n");

The k-means initialization process is a major customization point and will be discussed in detail
shortly. After the call to InitRandom, the demo program displays the initial clustering to the
command shell purely for demonstration purposes. The ability to insert display statements
anywhere is another advantage of writing custom machine learning code, compared to using an
existing tool or API set where you don't have access to source code.

The heart of method Cluster is the update-centroids, update-clustering loop:

bool changed = true;
int maxCount = numTuples * 10; // sanity check
int ct = 0;
while (changed == true && ct <= maxCount)

25

{
 ++ct;
 UpdateCentroids(data);
 changed = UpdateClustering(data);
}

Helper method UpdateCentroids uses the current clustering to compute the centroid for each
cluster. Helper method UpdateClustering then uses the new centroids to reassign each data
item to the cluster that is associated with the closest centroid. The method returns false if no
data items change clusters.

The k-means algorithm typically reaches a stable clustering very quickly. Mathematically, k-
means is guaranteed to converge to a local optimum solution. But this fact does not mean that
an implementation of the clustering process is guaranteed to terminate. It is possible, although
extremely unlikely, for the algorithm to oscillate, where one data item is repeatedly swapped
between two clusters. To prevent an infinite loop, a sanity counter is maintained. Here, the
maximum loop count is set to numTuples * 10, which is sufficient in most practical scenarios.

Method Cluster finishes by copying the values in class member array clustering into a local

return array. This allows the calling code to access and view the clustering without having to
implement a public method along the lines of a routine named GetClustering.

. . .
 int[] result = new int[numTuples];
 Array.Copy(this.clustering, result, clustering.Length);
 return result;
}

You might want to consider checking the value of variable ct before returning the clustering

result. If the value of variable ct equals the value of maxCount, then method Cluster terminated

before reaching a stable state, which likely indicates something went very wrong.

Clustering Initialization

The initialization process is critical to the k-means algorithm. After initialization, clustering is
essentially deterministic, so a k-means clustering result depends entirely on how the clustering
is initialized. There are two main initialization approaches. The demo program assigns each
data tuple to a random cluster ID, making sure that each cluster has at least one tuple assigned
to it. The definition of method InitRandom begins with:

private void InitRandom(double[][] data)
{
 int numTuples = data.Length;
 int clusterID = 0;
 for (int i = 0; i < numTuples; ++i)
 {
 clustering[i] = clusterID++;
 if (clusterID == numClusters)
 clusterID = 0;
 }
. . .

26

The idea is to make sure that each cluster has at least one data tuple assigned. For the demo
data with 10 tuples, the code here would initialize class member array clustering to { 0, 1, 2,

0, 1, 2, 0, 1, 2, 0 }. This semi-random initial assignment of data tuples to clusters is fine for most
purposes, but it is normal to then further randomize the cluster assignments like so:

 for (int i = 0; i < numTuples; ++i)
 {
 int r = rnd.Next(i, clustering.Length); // pick a cell
 int tmp = clustering[r]; // get the cell value
 clustering[r] = clustering[i]; // swap values
 clustering[i] = tmp;
 }
} // InitRandom

This randomization code uses an extremely important mini-algorithm called the Fisher-Yates
shuffle. The code makes a single scan through the clustering array, swapping pairs of randomly
selected values. The algorithm is quite subtle. A common mistake in Fisher-Yates is:

int r = rnd.Next(0, clustering.Length); // wrong!

Although it is not obvious at all, the bad code generates an apparently random ordering of array
values, but in fact the ordering would be strongly biased toward certain patterns.

The second main k-means clustering initialization approach is sometimes called Forgy
initialization. The idea is to pick a few actual data tuples to act as initial pseudo-means, and then
assign each data tuple to the cluster corresponding to the closest pseudo-mean. In my opinion,
research results are not conclusive about which clustering initialization approach is better under
which circumstances.

Updating the Centroids

The code for method UpdateClustering begins by computing the current number of data tuples
assigned to each cluster:

private bool UpdateCentroids(double[][] data)
{
 int[] clusterCounts = new int[numClusters];
 for (int i = 0; i < data.Length; ++i)
 {
 int clusterID = clustering[i];
 ++clusterCounts[clusterID];
 }
. . .

The number of tuples assigned to each cluster is needed to compute the average of each
centroid component. Here, the clusterCounts array is declared local to method

UpdateCentroids. An alternative is to declare clusterCounts as a class member. When writing

object-oriented code, it is sometimes difficult to choose between using class members or local
variables, and there are very few good, general rules-of-thumb in my opinion.

27

Next, method UpdateClustering zeroes-out the current cells in the this.centroids matrix:

for (int k = 0; k < centroids.Length; ++k)
 for (int j = 0; j < centroids[k].Length; ++j)
 centroids[k][j] = 0.0;

An alternative is to use a scratch matrix to perform the calculations. Next, the sums are
accumulated:

for (int i = 0; i < data.Length; ++i)
{
 int clusterID = clustering[i];
 for (int j = 0; j < data[i].Length; ++j)
 centroids[clusterID][j] += data[i][j]; // accumulate sum
}

Even though the code is short, it's a bit tricky and, for me at least, the only way to fully
understand what is going on is to sketch a diagram of the data structures, like the one shown in
Figure 1-e. Method UpdateCentroids concludes by dividing the accumulated sums by the
appropriate cluster count:

. . .
 for (int k = 0; k < centroids.Length; ++k)
 for (int j = 0; j < centroids[k].Length; ++j)
 centroids[k][j] /= clusterCounts[k]; // danger?
} // UpdateCentroids

Notice that if any cluster count has the value 0, a fatal division by zero error will occur. Recall
the basic k-means algorithm is:

initialize clustering
loop
 update centroids
 update clustering
end loop

This implies it is essential that the cluster initialization and cluster update routines ensure that
no cluster counts ever become zero. But how can a cluster count become zero? During the k-
means processing, data tuples are reassigned to the cluster that corresponds to the closest
centroid. Even if each cluster initially has at least one tuple assigned to it, if a data tuple is
equally close to two different centroids, the tuple may move to either associated cluster.

Updating the Clustering

The definition of method UpdateClustering starts with:

private bool UpdateClustering(double[][] data)
{
 bool changed = false;
 int[] newClustering = new int[clustering.Length];
 Array.Copy(clustering, newClustering, clustering.Length);
 double[] distances = new double[numClusters];

28

. . .

Local variable changed holds the method return value; it's assumed to be false and will be set to

true if any tuple changes cluster assignment. Local array newClustering holds the proposed

new clustering. The local array named distances holds the distance from a given data tuple to

each centroid. For example, if array distances held { 4.0, 1.5, 2.8 }, then the distance from

some tuple to cluster 0 is 4.0, the distance from the tuple to centroid 1 is 1.5, and the distance
from the tuple to centroid 2 is 2.8. Therefore, the tuple is closest to centroid 1 and would be
assigned to cluster 1.

Next, method UpdateClustering does just that with the following code:

for (int i = 0; i < data.Length; ++i) // each tuple
{
 for (int k = 0; k < numClusters; ++k)
 distances[k] = Distance(data[i], centroids[k]);

 int newClusterID = MinIndex(distances); // closest centroid
 if (newClusterID != newClustering[i])
 {
 changed = true; // note a new clustering
 newClustering[i] = newClusterID; // accept update
 }
}

The key code calls two helper methods: Distance, to compute the distance from a tuple to a
centroid, and MinIndex, to identify the cluster ID of the smallest distance. Next, the method
checks to see if any data tuples changed cluster assignments:

if (changed == false)
 return false;

If there is no change to the clustering, then the algorithm has stabilized and UpdateClustering
can exit with the current clustering. Another early exit occurs if the proposed new clustering
would result in a clustering where one or more clusters have no data tuples assigned to them:

int[] clusterCounts = new int[numClusters];
for (int i = 0; i < data.Length; ++i)
{
 int clusterID = newClustering[i];
 ++clusterCounts[clusterID];
}

for (int k = 0; k < numClusters; ++k)
 if (clusterCounts[k] == 0)
 return false; // bad proposed clustering

Exiting early when the proposed new clustering would produce an empty cluster is simple and
effective, but could lead to a mathematically non-optimal clustering result. An alternative
approach is to move a randomly selected data item from a cluster with two or more assigned
tuples to the empty cluster. The code to do this is surprisingly tricky. The demo program listing
at the end of this chapter shows one possible implementation.

29

Method UpdateClustering finishes by transferring the values in the proposed new clustering,
which is now known to be good, into the class member clustering array and returning

Boolean true, indicating there was a change in cluster assignments:

. . .
 Array.Copy(newClustering, this.clustering, newClustering.Length);
 return true;
} // UpdateClustering

Helper method Distance is short but significant:

private static double Distance(double[] tuple, double[] centroid)
{
 double sumSquaredDiffs = 0.0;
 for (int j = 0; j < tuple.Length; ++j)
 sumSquaredDiffs += (tuple[j] - centroid[j]) * (tuple[j] - centroid[j]);
 return Math.Sqrt(sumSquaredDiffs);
}

Method Distance computes the Euclidean distance between a data tuple and a centroid. For
example, suppose some tuple is (70, 80.0) and a centroid is (66, 83.0). The Euclidean distance
is:

distance = Sqrt((70 - 66)2 + (80.0 - 83.0)2)

 = Sqrt(16 + 9.0)
 = Sqrt(25.0)
 = 5.0

There are several alternatives to the Euclidean distance that can be used with the k-means
algorithm. One of the common alternatives you might want to investigate is called the cosine
distance.

Helper method MinIndex locates the index of the smallest value in an array. For the k-means
algorithm, this index is equivalent to the cluster ID of the closest centroid:

private static int MinIndex(double[] distances)
{
 int indexOfMin = 0;
 double smallDist = distances[0];
 for (int k = 1; k < distances.Length; ++k)
 {
 if (distances[k] < smallDist)
 {
 smallDist = distances[k];
 indexOfMin = k;
 }
 }
 return indexOfMin;
}

Even a short and simple routine like method MinIndex has some implementation alternatives to
consider. For example, if the method's static qualifier is removed, then the reference to

distances.Length can be replaced with this.numClusters.

30

Summary

The k-means algorithm can be used to group numeric data items. Although it is possible to
apply k-means to categorical data by first transforming the data to a numeric form, k-means is
not a good choice for categorical data clustering. The main problem is that k-means relies on
the notion of distance, which makes sense for numeric data, but usually doesn't make sense for
a categorical variable such as color that can take values like red, yellow, and pink.

One important option not presented in the demo program is to normalize the data to be
clustered. Normalization transforms the data so that the values in each column have roughly
similar magnitudes. Without normalization, columns that have very large magnitude values can
dominate columns with small magnitude values. The demo program did not need normalization
because the magnitudes of the column values—height in inches and weight in kilograms—were
similar.

An algorithm that is closely related to k-means is called k-medoids. Recall that in k-means, a
centroid for each cluster is computed, where each centroid is essentially an average data item.
Then, each data item is assigned to the cluster associated with the closet centroid. In k-medoids
clustering, centroids are calculated, but instead of being an average data item, each centroid is
required to be one of the actual data items. Another closely related algorithm is called k-
medians clustering. Here, the centroid of each cluster is the median of the data items in the
cluster, rather than the average of the data items in the cluster.

31

Chapter 1 Complete Demo Program Source Code

using System;
namespace ClusterNumeric
{
 class ClusterNumProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("\nBegin k-means clustering demo\n");

 double[][] rawData = new double[10][];
 rawData[0] = new double[] { 73, 72.6 };
 rawData[1] = new double[] { 61, 54.4 };
 rawData[2] = new double[] { 67, 99.9 };
 rawData[3] = new double[] { 68, 97.3 };
 rawData[4] = new double[] { 62, 59.0 };
 rawData[5] = new double[] { 75, 81.6 };
 rawData[6] = new double[] { 74, 77.1 };
 rawData[7] = new double[] { 66, 97.3 };
 rawData[8] = new double[] { 68, 93.3 };
 rawData[9] = new double[] { 61, 59.0 };

 //double[][] rawData = LoadData("..\\..\\HeightWeight.txt", 10, 2, ',');

 Console.WriteLine("Raw unclustered height (in.) weight (kg.) data:\n");
 Console.WriteLine(" ID Height Weight");
 Console.WriteLine("---------------------");
 ShowData(rawData, 1, true, true);

 int numClusters = 3;
 Console.WriteLine("\nSetting numClusters to " + numClusters);

 Console.WriteLine("Starting clustering using k-means algorithm");
 Clusterer c = new Clusterer(numClusters);
 int[] clustering = c.Cluster(rawData);
 Console.WriteLine("Clustering complete\n");

 Console.WriteLine("Final clustering in internal form:\n");
 ShowVector(clustering, true);

 Console.WriteLine("Raw data by cluster:\n");
 ShowClustered(rawData, clustering, numClusters, 1);

 Console.WriteLine("\nEnd k-means clustering demo\n");
 Console.ReadLine();
 }

 static void ShowData(double[][] data, int decimals, bool indices, bool newLine)
 {
 for (int i = 0; i < data.Length; ++i)
 {
 if (indices == true)
 Console.Write(i.ToString().PadLeft(3) + " ");
 for (int j = 0; j < data[i].Length; ++j)
 {
 double v = data[i][j];
 Console.Write(v.ToString("F" + decimals) + " ");
 }

32

 Console.WriteLine("");
 }
 if (newLine == true)
 Console.WriteLine("");
 }

 static void ShowVector(int[] vector, bool newLine)
 {
 for (int i = 0; i < vector.Length; ++i)
 Console.Write(vector[i] + " ");
 if (newLine == true)
 Console.WriteLine("\n");
 }

 static void ShowClustered(double[][] data, int[] clustering,
 int numClusters, int decimals)
 {
 for (int k = 0; k < numClusters; ++k)
 {
 Console.WriteLine("===================");
 for (int i = 0; i < data.Length; ++i)
 {
 int clusterID = clustering[i];
 if (clusterID != k) continue;
 Console.Write(i.ToString().PadLeft(3) + " ");
 for (int j = 0; j < data[i].Length; ++j)
 {
 double v = data[i][j];
 Console.Write(v.ToString("F" + decimals) + " ");
 }
 Console.WriteLine("");
 }
 Console.WriteLine("===================");
 } // k
 }
 } // Program

 public class Clusterer
 {
 private int numClusters; // number of clusters
 private int[] clustering; // index = a tuple, value = cluster ID
 private double[][] centroids; // mean (vector) of each cluster
 private Random rnd; // for initialization

 public Clusterer(int numClusters)
 {
 this.numClusters = numClusters;
 this.centroids = new double[numClusters][];
 this.rnd = new Random(0); // arbitrary seed
 }

 public int[] Cluster(double[][] data)
 {
 int numTuples = data.Length;
 int numValues = data[0].Length;
 this.clustering = new int[numTuples];

 for (int k = 0; k < numClusters; ++k) // allocate each centroid
 this.centroids[k] = new double[numValues];

33

 InitRandom(data);

 Console.WriteLine("\nInitial random clustering:");
 for (int i = 0; i < clustering.Length; ++i)
 Console.Write(clustering[i] + " ");
 Console.WriteLine("\n");

 bool changed = true; // change in clustering?
 int maxCount = numTuples * 10; // sanity check
 int ct = 0;
 while (changed == true && ct <= maxCount)
 {
 ++ct; // k-means typically converges very quickly
 UpdateCentroids(data); // no effect if fail
 changed = UpdateClustering(data); // no effect if fail
 }

 int[] result = new int[numTuples];
 Array.Copy(this.clustering, result, clustering.Length);
 return result;
 } // Cluster

 private void InitRandom(double[][] data)
 {
 int numTuples = data.Length;

 int clusterID = 0;
 for (int i = 0; i < numTuples; ++i)
 {
 clustering[i] = clusterID++;
 if (clusterID == numClusters)
 clusterID = 0;
 }
 for (int i = 0; i < numTuples; ++i)
 {
 int r = rnd.Next(i, clustering.Length);
 int tmp = clustering[r];
 clustering[r] = clustering[i];
 clustering[i] = tmp;
 }
 }

 private void UpdateCentroids(double[][] data)
 {
 int[] clusterCounts = new int[numClusters];
 for (int i = 0; i < data.Length; ++i)
 {
 int clusterID = clustering[i];
 ++clusterCounts[clusterID];
 }

 // zero-out this.centroids so it can be used as scratch
 for (int k = 0; k < centroids.Length; ++k)
 for (int j = 0; j < centroids[k].Length; ++j)
 centroids[k][j] = 0.0;

 for (int i = 0; i < data.Length; ++i)
 {

34

 int clusterID = clustering[i];
 for (int j = 0; j < data[i].Length; ++j)
 centroids[clusterID][j] += data[i][j]; // accumulate sum
 }

 for (int k = 0; k < centroids.Length; ++k)
 for (int j = 0; j < centroids[k].Length; ++j)
 centroids[k][j] /= clusterCounts[k]; // danger?
 }

 private bool UpdateClustering(double[][] data)
 {
 // (re)assign each tuple to a cluster (closest centroid)
 // returns false if no tuple assignments change OR
 // if the reassignment would result in a clustering where
 // one or more clusters have no tuples.

 bool changed = false; // did any tuple change cluster?

 int[] newClustering = new int[clustering.Length]; // proposed result
 Array.Copy(clustering, newClustering, clustering.Length);

 double[] distances = new double[numClusters]; // from tuple to centroids

 for (int i = 0; i < data.Length; ++i) // walk through each tuple
 {
 for (int k = 0; k < numClusters; ++k)
 distances[k] = Distance(data[i], centroids[k]);

 int newClusterID = MinIndex(distances); // find closest centroid
 if (newClusterID != newClustering[i])
 {
 changed = true; // note a new clustering
 newClustering[i] = newClusterID; // accept update
 }
 }

 if (changed == false)
 return false; // no change so bail

 // check proposed clustering cluster counts
 int[] clusterCounts = new int[numClusters];
 for (int i = 0; i < data.Length; ++i)
 {
 int clusterID = newClustering[i];
 ++clusterCounts[clusterID];
 }

 for (int k = 0; k < numClusters; ++k)
 if (clusterCounts[k] == 0)
 return false; // bad clustering

 // alternative: place a random data item into empty cluster
 // for (int k = 0; k < numClusters; ++k)
 // {
 // if (clusterCounts[k] == 0) // cluster k has no items
 // {
 // for (int t = 0; t < data.Length; ++t) // find a tuple to put into cluster k
 // {

35

 // int cid = newClustering[t]; // cluster of t
 // int ct = clusterCounts[cid]; // how many items are there?
 // if (ct >= 2) // t is in a cluster w/ 2 or more items
 // {
 // newClustering[t] = k; // place t into cluster k
 // ++clusterCounts[k]; // k now has a data item
 // --clusterCounts[cid]; // cluster that used to have t
 // break; // check next cluster
 // }
 // } // t
 // } // cluster count of 0
 // } // k

 Array.Copy(newClustering, clustering, newClustering.Length); // update
 return true; // good clustering and at least one change
 } // UpdateClustering

 private static double Distance(double[] tuple, double[] centroid)
 {
 // Euclidean distance between two vectors for UpdateClustering()
 double sumSquaredDiffs = 0.0;
 for (int j = 0; j < tuple.Length; ++j)
 sumSquaredDiffs += (tuple[j] - centroid[j]) * (tuple[j] - centroid[j]);
 return Math.Sqrt(sumSquaredDiffs);
 }

 private static int MinIndex(double[] distances)
 {
 // helper for UpdateClustering() to find closest centroid
 int indexOfMin = 0;
 double smallDist = distances[0];
 for (int k = 1; k < distances.Length; ++k)
 {
 if (distances[k] < smallDist)
 {
 smallDist = distances[k];
 indexOfMin = k;
 }
 }
 return indexOfMin;
 }
 } // Clusterer
} // ns

36

Chapter 2 Categorical Data Clustering

Introduction

Data clustering is the process of placing data items into different groups (clusters) in such a way
that items in a particular cluster are similar to each other and items in different clusters are
different from each other. Once clustered, the data can be examined to find useful information,
such as determining what types of items are often purchased together so that targeted
advertising can be aimed at customers.

The most common clustering technique is the k-means algorithm. However, k-means is really
only applicable when the data items are completely numeric. Clustering data sets that contain
categorical attributes such as color, which can take on values like "red" and "blue", is a
challenge. One of several approaches for clustering categorical data, or data sets that contain
both numeric and categorical data, is to use a concept called category utility (CU).

The CU value for a set of clustered data is a number like 0.3299 that is a measure of how good
the particular clustering is. Larger values of CU are better, where the clustering is less likely
than a random clustering of the data. There are several clustering algorithms based on CU. This
chapter describes a technique called greedy agglomerative category utility clustering (GACUC).

A good way to get a feel for the GACUC clustering algorithm is to examine the screenshot of the
demo program shown in Figure 2-a. The demo program clusters a data set of seven items into
two groups. Each data item represents a gemstone. Each item has three attributes: color (red,
blue, green, or yellow), size (small, medium, or large), and heaviness (false or true).

The final clustering of the seven data items is:

Index Color Size Heavy

 0 Blue Small False
 2 Red Large False
 3 Red Small True
 6 Red Large False

 1 Green Medium True
 4 Green Medium False
 5 Yellow Medium False

CU = 0.3299

Even though it's surprisingly difficult to describe exactly what a good clustering is, most people
would likely agree that the final clustering shown is the best way to place the seven data items
into two clusters.

37

Figure 2-a: Clustering Categorical Data

Clustering using the GACUC algorithm, like most clustering algorithms, requires the user to
specify the number of clusters in advance. However, unlike most clustering algorithms, GACUC
provides a metric of clustering goodness, so you can try clustering with different numbers of
clusters and easily compare the results.

Understanding Category Utility

The key to implementing and customizing the GACUC clustering algorithm is understanding
category utility. Data clustering involves solving two main problems. The first problem is defining
exactly what makes a good clustering of data. The second problem is determining an effective
technique to search through all possible combinations of clustering to find the best clustering.

CU addresses the first problem. CU is a very clever metric that defines a clustering goodness.
Small values of CU indicate poor clustering and larger values indicate better clustering. As far
as I've been able to determine, CU was first defined by M. Gluck and J. Corter in a 1985
research paper titled "Information, Uncertainty, and the Utility of Categories."

38

The mathematical equation for CU is a bit intimidating at first glance:

The equation is simpler than it first appears. Uppercase C is an overall clustering. Lowercase m
is the number of clusters. Lowercase k is a zero-based cluster index. Uppercase P means
"probability of." Uppercase A means attribute (such as color). Uppercase V means attribute
value (such as red).

The term inside the double summation on the right represents the probability of guessing an
attribute value purely by chance. The term inside the double summation on the left represents
the probability of guessing an attribute value for the given clustering. So, the larger the
difference, the less likely the clustering occurred by chance.

Computing category utility is probably best understood by example. Suppose the data set to be
clustered is the one shown at the top of Figure 2-a, and you want to compute the CU of this
(non-best) clustering:

k = 0

Red Large False
Green Medium False
Yellow Medium False
Red Large False

k = 1

Blue Small False
Green Medium True
Red Small True

The first step is to compute the P(Ck), which are the probabilities of each cluster. For k = 0,
because there are seven tuples in the data set and four of them are in cluster 0, P(C0) = 4/7 =
0.5714. Similarly, P(C1) = 3/7 = 0.4286.

The second step is to compute the double summation on the right in the CU equation, called the
unconditional term. The computation is the sum of N terms where N is the total number of
different attribute values in the data set, and goes like this:

Red: (3/7)2 = 0.1837

Blue: (1/7)2 = 0.0204

Green: (2/7)2 = 0.0816

Yellow: (1/7)2 = 0.0204

Small: (2/7)2 = 0.0816

Medium: (3/7)2 = 0.1837

Large: (2/7)2 = 0.0816

39

False: (5/7)2 = 0.5102

True: (2/7)2 = 0.0816
Unconditional sum = 0.1837 + 0.0204 + . . . + 0.0816 = 1.2449 (rounded)

The third step is to compute the double summation on the left, called the conditional probability
terms. There are m sums (where m is the number of clusters), each of which has N terms.

For k = 0 the computation goes:

Red: (2/4)2 = 0.2500

Blue: (0/4)2 = 0.0000

Green: (1/4)2 = 0.0625

Yellow: (1/4)2 = 0.0625

Small: (0/4)2 = 0.0000

Medium: (2/4)2 = 0.2500

Large: (2/4)2 = 0.2500

False: (4/4)2 = 1.0000

True: (0/4)2 = 0.0000

Conditional k = 0 sum = 0.2500 + 0.0000 + . . . + 0.2500 = 1.8750

For k = 1 the computation is:

Red: (1/3)2 = 0.1111

Blue: (1/3)2 = 0.1111

Green: (1/3)2 = 0.1111

Yellow: (0/3)2 = 0.0000

Small: (2/3)2 = 0.4444

Medium: (1/3)2 = 0.1111

Large: (0/3)2 = 0.0000

False: (1/3)2 = 0.1111

True: (2/3)2 = 0.4444

Conditional k = 1 sum = 0.1111 + 0.1111 + . . . + 0.4444 = 1.4444 (rounded)

The last step is to combine the computed sums according to the CU equation:

CU = 1/2 * [0.5714 * (1.8750 - 1.2449) + 0.4286 * (1.4444 - 1.2449)]

 = 0.2228 (rounded)

Notice the CU of this non-optimal clustering, 0.2228, is less than the CU of the optimal
clustering, 0.3299, shown in Figure 2-a. The key point is that for any clustering of a data set
containing categorical data, it is possible to compute a value that describes how good the
clustering is.

40

Understanding the GACUC Algorithm

After defining a way to measure clustering goodness, the second challenging step when
clustering categorical data is coming up with a technique to search through all possible
clusterings. In general, it is not feasible to examine every possible clustering of a data set. For
example, even for a data set with only 100 tuples, and m = 2 clusters, there are 2100 / 2! = 299 =
633,825,300,114,114,700,748,351,602,688 possible clusterings. Even if you could somehow
examine one trillion clusterings per second, it would take roughly 19 billion years to check them
all. For comparison, the age of the universe is estimated to be about 14 billion years.

The GACUC algorithm uses what is called a greedy agglomerative approach. The idea is to
begin by seeding each cluster with a single data tuple. Then for each remaining tuple, determine
which cluster, if the current tuple were added to it, would yield the best overall clustering. Then
the tuple that gives the best CU is actually assigned to that cluster.

Expressed in pseudo-code:

assign just one data tuple to each cluster
loop each remaining tuple
 for each cluster
 compute CU if tuple were to be assigned to cluster
 save proposed CU
 end for
 determine which cluster assignment would have given best CU
 actually assign tuple to that cluster
end loop

The algorithm is termed greedy because the best choice (tuple-cluster assignment in this case)
at any given state is always selected. The algorithm is termed agglomerative because the final
solution (overall clustering in this case) is built up one item at a time.

This algorithm does not guarantee that the optimal clustering will be found. The final clustering
produced by the GACUC algorithm depends on which m tuples are selected as initial seed
tuples, and the order in which the remaining tuples are examined. But because the result of any
clustering has a goodness metric, CU, you can use what is called “restart”. In pseudo-code:

loop n times
 cluster all data tuples, computing the current CU
 if current CU > best CU
 save current clustering
 best CU := current CU
 end if
end loop
return best clustering found

It turns out that selecting an initial data tuple for each cluster is not trivial. One naive approach
would be to simply select m random tuples as the seeds. However, if the seed tuples are similar
to each other, then the resulting clustering could be poor. A better approach for selecting initial
tuples for each cluster is to select m tuples that are as different as possible from each other.

41

There are several ways to define how a set of data tuples differ. The simplest approach is to
count the total number of attribute values that differ when each possible pair of tuples is
examined. This is called the Hamming distance. For example, consider these three tuples:

[0] Red Large False
[1] Green Medium False
[2] Yellow Medium False

Looking at the color attribute, items 0 and 1 differ, 0 and 2 differ, and 1 and 2 differ. Looking at
the size attribute, items 0 and 1 differ, and items 0 and 2 differ. Looking at the heaviness
attribute, no pairs of tuples differ. So there are a total of 3 + 2 + 0 = 5 differences. Larger values
for the difference metric mean more dissimilarity, which is better for choosing the initial tuples to
be assigned to clusters.

Now another, but relatively minor, problem arises. In most situations it isn't feasible to examine
all possible sets of initial tuples. If there are T data tuples and m clusters, then there are
Choose(T, m) ways to select m tuples from the set of T tuples. For example, if T = 500 and m =
10, then there are Choose(500, 10) = 500! / 10! * 490! = 245,810,588,801,891,098,700 possible
sets of initial tuples to examine. GACUC uses this approach to select a few random sets of
initial tuples to examine, rather than try to examine all possible sets.

Demo Program Overall Structure

To create the demo, I launched Visual Studio and created a new C# console application and
named it ClusterCategorical. After the template code loaded in the editor, I removed all using

statements at the top of the source code, except for the references to the top-level System and
the Collections.Generic namespaces.

In the Solution Explorer window, I renamed file Program.cs to the more descriptive
ClusterCatProgram.cs, and Visual Studio automatically renamed class Program to
ClusterCatProgram.

The overall structure of the demo program, with a few minor edits to save space, is presented in
Listing 2-a. Note that in order to keep the size of the example code small, and the main ideas
as clear as possible, all normal error checking is omitted.

using System;
using System.Collections.Generic;
namespace ClusterCategorical
{
 class ClusterCatProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Begin categorical data clustering demo");

 string[][] rawData = new string[7][];
 rawData[0] = new string[] { "Blue", "Small", "False" };
 rawData[1] = new string[] { "Green", "Medium", "True" };
 rawData[2] = new string[] { "Red", "Large", "False" };
 rawData[3] = new string[] { "Red", "Small", "True" };
 rawData[4] = new string[] { "Green", "Medium", "False" };

42

 rawData[5] = new string[] { "Yellow", "Medium", "False" };
 rawData[6] = new string[] { "Red", "Large", "False" };

 Console.WriteLine("Raw unclustered data: ");
 Console.WriteLine(" Color Size Heavy");
 Console.WriteLine("-----------------------------");
 ShowData(rawData);

 int numClusters = 2;
 Console.WriteLine("Setting numClusters to " + numClusters);
 int numRestarts = 4;
 Console.WriteLine("Setting numRestarts to " + numRestarts);

 Console.WriteLine("Starting clustering using greedy CU algorithm");
 CatClusterer cc = new CatClusterer(numClusters, rawData);
 double cu;
 int[] clustering = cc.Cluster(numRestarts, out cu);
 Console.WriteLine("Clustering complete");

 Console.WriteLine("Final clustering in internal form: ");
 ShowVector(clustering, true);

 Console.WriteLine("Final CU value = " + cu.ToString("F4"));

 Console.WriteLine("Raw data grouped by cluster: ");
 ShowClustering(numClusters, clustering, rawData);

 Console.WriteLine("End categorical data clustering demo\n");
 Console.ReadLine();
 } // Main

 static void ShowData(string[][] matrix) { . . }
 static void ShowVector(int[] vector, bool newLine) { . . }
 static void ShowClustering(int numClusters, int[] clustering,
 string[][] rawData) { . . }
 } // Program

 public class CatClusterer { . . }

} // ns

Listing 2-a: Categorical Data Clustering Demo Program Structure

All the clustering logic is contained in a single program-defined class named CatClusterer. All
the program logic is contained in the Main method. The Main method begins by setting up
seven hard-coded, color-size-heaviness data items in an array-of-arrays style matrix:

static void Main(string[] args)
{
 Console.WriteLine("\nBegin categorical data clustering demo\n");
 string[][] rawData = new string[7][];
 rawData[0] = new string[] { "Blue", "Small", "False" };
 rawData[1] = new string[] { "Green", "Medium", "True" };
 rawData[2] = new string[] { "Red", "Large", "False" };
 rawData[3] = new string[] { "Red", "Small", "True" };
 rawData[4] = new string[] { "Green", "Medium", "False" };
 rawData[5] = new string[] { "Yellow", "Medium", "False" };

43

 rawData[6] = new string[] { "Red", "Large", "False" };
. . .

In a non-demo scenario, you would likely have data stored in a text file and would load the data
into memory using a helper function. After displaying the raw string data matrix using helper
method ShowData, the demo program prepares the clustering parameters:

int numClusters = 2;
Console.WriteLine("\nSetting numClusters to " + numClusters);
int numRestarts = 4;
Console.WriteLine("Setting numRestarts to " + numRestarts);

Variable numRestarts holds the number of times the GACUC algorithm will be called, looking

for the clustering that gives the largest CU value. Larger values of numRestarts increase the

chances of finding the optimal clustering, but at the expense of time. A rule of thumb that often
works well in practice is to set numRestarts to the square root of the number of data items.

The calling interface is simple:

CatClusterer cc = new CatClusterer(numClusters, rawData);
double cu;
int[] clustering = cc.Cluster(numRestarts, out cu);
ShowVector(clustering, true);
Console.WriteLine("Final CU value = " + cu.ToString("F4"));

A CatClusterer object is instantiated and its Cluster method is called. Behind the scenes,
method Cluster calls a method ClusterOnce several (numRestarts) times, keeping track of the

best clustering found. That best clustering, and its associated CU value, are returned.

In the demo program, the final best clustering is stored into an array called clustering and is

encoded as { 0, 1, 0, 0, 1, 1, 0 }. This means data tuple 0 is assigned to cluster 0, data tuple 1 is
assigned to cluster 1, data tuple 2 is assigned to cluster 0, and so on. The final CU value of the
best clustering found is stored into out-parameter cu and is 0.3299.

The demo program concludes by calling helper method ShowClustering to display the raw data,
arranged by cluster:

. . .
 Console.WriteLine("\nRaw data grouped by cluster:\n");
 ShowClustering(numClusters, clustering, rawData);
 Console.WriteLine("\nEnd categorical data clustering demo\n");
 Console.ReadLine();
} // Main

44

The Key Data Structures

The important data structures for the GACUC categorical data clustering program are illustrated
in Figure 2-b. The array-of-arrays style matrix named rawData shows the data tuples where

attribute values (like red) are in string form. Matrix tuplesAsInt holds the same data but where

each attribute value has been converted to a zero-based index (like 2). In situations with very
large data sets or limited machine memory, an alternative design is to store string-to-integer
encoding, for example, by using a generic Dictionary collection for each attribute column.

The GACUC algorithm computes category utility many times. It would be possible to compute
CU from scratch each time, which would involve scanning the entire data set and counting the
number of attribute values assigned to each cluster. But a far more efficient approach is to store
the current count of each attribute value in a data structure, and then update the data structure
as each data tuple is assigned to a cluster. Data structure valueCounts stores this information.

The first index of valueCounts is an attribute, like color. The second index is an attribute value,

like red. The third index is a cluster ID, like 0. The cell value is the count. For example, if cell
valueCounts[0][2][0] has value 3, this means there are three data tuples assigned to cluster

0, where color (0) has value red (2).

The cell in valueCounts where the third index has value numClusters holds the sum of

assigned tuples for all clusters for the associated attribute value. For example,
valueCounts[0][2][2] holds the number of tuples assigned where color = red.

Figure 2-b: GACUC Clustering Algorithm Key Data Structures

45

The array clusterCounts holds the number of data tuples assigned to each cluster at any point

during the algorithm, and also the total number of tuples that have been assigned. For example,
if clusterCounts has values { 2, 3, 5 }, then two tuples have been assigned to cluster 0, three

tuples have been assigned to cluster 1, and a total of five tuples have been assigned.

The CatClusterer Class

A program-defined class named CatClusterer houses the GACUC algorithm code. The structure
of the class is presented in Listing 2-b.

public class CatClusterer
{
 private int numClusters;
 private int[] clustering;
 private int[][] dataAsInts;
 private int[][][] valueCounts;
 private int[] clusterCounts;
 private Random rnd;

 public CatClusterer(int numClusters, string[][] rawData) { . . }
 public int[] Cluster(int numRestarts, out double catUtility) { . . }

 private int[] ClusterOnce(int seed, out double catUtility)

 private void MakeDataMatrix(string[][] rawData)
 private void Allocate() { . . }
 private void Initialize() { . . }
 private double CategoryUtility() { . . }
 private static int MaxIndex(double[] cus) { . . }
 private void Shuffle(int[] indices) { . . }
 private void Assign(int dataIndex, int clusterID) { . . }
 private void Unassign(int dataIndex, int clusterID) { . . }
 private int[] GetGoodIndices(int numTrials) { . . }
 private int[] Reservoir(int n, int range) { . . }
}

Listing 2-b: Program-Defined CatClusterer Class

Class CatClusterer has six private data members, which are illustrated in Figure 2-b. For most
developers, including me, having a diagram of the key data structures is essential when writing
machine learning code. Class member rnd is used when generating candidate sets of initial

tuples to be assigned to clusters, and when iterating through the remaining tuples in a random
order.

The class exposes just two public methods: a constructor, and the clustering method. Helper
method ClusterOnce performs one pass of the GACUC algorithm, returning the clustering found
and the associated CU as an out-parameter. Method Cluster calls ClusterOnce numRestart

times and returns the best clustering and CU found.

46

Helper methods MakeDataMatrix and Allocate are called by the class constructor. Method
MakeDataMatrix accepts the matrix of raw string data to be clustered and returns the equivalent
zero-based integer encoded matrix. An important design alternative is to preprocess the raw
data and save the integer representation as a text file. Method Allocate allocates memory for the
key data structures and is just a convenience to keep the constructor code tidy.

Method ClusterOnce, which does most of the work, calls helper methods GetGoodIndices,
Assign, Unassign, Shuffle, and MaxIndex. Method GetGoodIndices generates initial data tuples
that are different from each other. Assign updates all data structures to assign a tuple to a
cluster. Unassign reverses the action of Assign. Method Shuffle is used to present data tuples in
random order. Method MaxIndex is used to find the best proposed cluster assignment.

Private method Reservoir is a sub-helper called by helper method GetGoodIndices. Method
Reservoir uses a mini-algorithm called reservoir sampling to find n distinct array indices. The
CatClusterer class constructor is short:

public CatClusterer(int numClusters, string[][] rawData)
{
 this.numClusters = numClusters;
 MakeDataMatrix(rawData);
 Allocate();
}

A recurring theme when designing machine learning code is the decision of whether to pass the
source data to the constructor or to the primary public method. Here, the data is passed to the
constructor so that helper MakeDataMatrix can create the internal integer-form dataAsInts matrix.

The Cluster Method

Method Cluster is presented in Listing 2-c. Notice that the method does not accept a parameter
representing the data to be clustered; the data is assumed to be available as a class member.

public int[] Cluster(int numRestarts, out double catUtility)
{
 int numRows = dataAsInts.Length;
 double currCU, bestCU = 0.0;
 int[] bestClustering = new int[numRows];
 for (int start = 0; start < numRestarts; ++start)
 {
 int seed = start; // use the start index as rnd seed
 int[] currClustering = ClusterOnce(seed, out currCU);
 if (currCU > bestCU)
 {
 bestCU = currCU;
 Array.Copy(currClustering, bestClustering, numRows);
 }
 }
 catUtility = bestCU;
 return bestClustering;
}

Listing 2-c: The Cluster Method

47

Method Cluster is essentially a wrapper around method ClusterOnce. Notice that the
randomization seed value passed to method ClusterOnce is the value of current iteration
variable, start. This trick is a common design pattern when using a restart algorithm so that the

worker method does not return the same result in each iteration.

The definition of method ClusterOnce begins with:

private int[] ClusterOnce(int seed, out double catUtility)
{
 this.rnd = new Random(seed);
 Initialize();
. . .

Helper method Initialize performs three tasks. First, the values in the clustering array are all

set to -1. This allows the algorithm to know whether a data tuple has been assigned to a cluster
or not. Second, the values in clusterCounts are set to 0 to reset the array, which holds counts

from any previous call to ClusterOnce. Third, the values in data structure valueCounts are set

to 0.

Next, method ClusterOnce selects the first tuples and assigns them to clusters:

int numTrials = dataAsInts.Length;
int[] goodIndexes = GetGoodIndices(numTrials);
for (int k = 0; k < numClusters; ++k)
 Assign(goodIndexes[k], k);

Method GetGoodIndices returns numClusters data indices where the data tuples are different

from each other. As explained earlier, it's usually not possible to examine all possible candidate
sets of initial tuples, so numTrials of sets are examined. After these good indices (the data

tuples are different) are found, their associated data tuples are assigned to clusters.

A short example will help clarify. For the demo data, with seven data tuples and number of
clusters set to three, method GetGoodIndices might return { 6, 0, 1 }. These are the indices of
three data items that are very different from each other, as defined by Hamming distance:

[6] Red Large False
[0] Blue Small False
[1] Green Medium True

These three tuples, 6, 0, and 1, are assigned to clusters 0, 1, and 2, respectively. The resulting
clustering data member would then be:

 1 2 -1 -1 -1 -1 0 (cluster ID)
[0] [1] [2] [3] [4] [5] [6] (tuple index)

Next, the order of the data tuples is scrambled so that they will be presented in a random order:

int numRows = dataAsInts.Length;
int[] rndSequence = new int[numRows];
for (int i = 0; i < numRows; ++i)
 rndSequence[i] = i;
Shuffle(rndSequence);

48

Helper method Shuffle uses the Fisher-Yates algorithm to shuffle the data tuple indices. Use of
the Fisher-Yates shuffle is very common in machine learning code.

At this point, the clustering algorithm walks through each tuple. If the current tuple has not been
assigned to a cluster (the value in clustering will be -1 if unassigned), each possible value of

cluster ID is examined, and the one cluster ID that gave the best clustering (the largest value of
CU) is associated with the current tuple:

for (int t = 0; t < numRows; ++t) // walk through each tuple
{
 int idx = rndSequence[t]; // index of data tuple to process
 if (clustering[idx] != -1) continue; // already clustered

 double[] candidateCU = new double[numClusters];

 for (int k = 0; k < numClusters; ++k) // each possible cluster
 {
 Assign(idx, k); // tentative cluster assignment
 candidateCU[k] = CategoryUtility(); // compute and save the CU
 Unassign(idx, k); // undo tentative assignment
 }

 int bestK = MaxIndex(candidateCU); // greedy. index is a cluster ID
 Assign(idx, bestK); // now we know which cluster gave the best CU
} // each tuple

At this point, all data tuples have been assigned to a cluster. Method ClusterOnce computes the
final category utility and returns the clustering as an explicit return value, and the CU as an out-
parameter:

. . .
 catUtility = CategoryUtility();
 int[] result = new int[numRows];
 Array.Copy(this.clustering, result, numRows);
 return result;
}

The CategoryUtility Method

The heart of the GACUC categorical data clustering algorithm is the method that computes
category utility for a given clustering of data. Method CategoryUtility is relatively simple because
it uses the precomputed counts stored in data structures valueCounts and clusterCounts.

The definition begins by computing the P(Ck) terms, the probabilities of each cluster:

private double CategoryUtility() // called by ClusterOnce
{
 int numTuplesAssigned = clusterCounts[clusterCounts.Length - 1];
 double[] clusterProbs = new double[this.numClusters];
 for (int k = 0; k < numClusters; ++k)
 clusterProbs[k] = (clusterCounts[k] * 1.0) / numTuplesAssigned;
. . .

49

Next, the single unconditional term (the sum of the unconditional probabilities) is computed:

double unconditional = 0.0;
for (int i = 0; i < valueCounts.Length; ++i)
{
 for (int j = 0; j < valueCounts[i].Length; ++j)
 {
 int sum = valueCounts[i][j][numClusters]; // last cell holds sum
 double p = (sum * 1.0) / numTuplesAssigned;
 unconditional += (p * p);
 }
}

Next, the numCluster conditional terms (the sums of conditional probabilities) are computed:

double[] conditionals = new double[numClusters];
for (int k = 0; k < numClusters; ++k)
{
 for (int i = 0; i < valueCounts.Length; ++i) // each att
 {
 for (int j = 0; j < valueCounts[i].Length; ++j) // each value
 {
 double p = (valueCounts[i][j][k] * 1.0) / clusterCounts[k];
 conditionals[k] += (p * p);
 }
 }
}

With the pieces of the puzzle computed, method CategoryUtility combines them according to
the mathematical definition of category utility:

. . .
 double summation = 0.0;
 for (int k = 0; k < numClusters; ++k)
 summation += clusterProbs[k] * (conditionals[k] - unconditional);
 return summation / numClusters;
}

Method CategoryUtility is an internal method in the sense that it assumes all needed counts are
available. You might want to consider writing a standalone public-scope version that creates
and initializes local versions of valueCounts and clusterCounts, scans the clustering array

and uses the dataAsInts matrix to populate the counts data structures, and then uses the

counts to compute CU.

Clustering Initialization

The clustering initialization process is the primary customization point for the GACUC
categorical data clustering algorithm. After initialization, GACUC clustering is deterministic, so
the clustering result depends entirely on initialization. Initialization is implemented in method
GetGoodIndices.

50

The method's definition begins:

private int[] GetGoodIndices(int numTrials)
{
 int numRows = dataAsInts.Length;
 int numCols = dataAsInts[0].Length;
 int[] result = new int[numClusters];
. . .

The goal is to find the indices of data tuples that are different from each other. Because it is not
possible in most scenarios to examine all possible sets of candidate data tuples, parameter
numTrials holds the number of times to examine randomly selected sets.

Even though not all possible sets of initial tuples can be examined, in general it is possible to
compare all possible pairs of tuples within a set of candidates:

int largestDiff = -1;
for (int trial = 0; trial < numTrials; ++trial)
{
 int[] candidates = Reservoir(numClusters, numRows);
 int numDifferences = 0; // for these candidates

 for (int i = 0; i < candidates.Length - 1; ++i) // all possible pairs
 {
 for (int j = i + 1; j < candidates.Length; ++j)
 {
 int aRow = candidates[i];
 int bRow = candidates[j];

 for (int col = 0; col < numCols; ++col)
 if (dataAsInts[aRow][col] != dataAsInts[bRow][col])
 ++numDifferences;
 } // j
 } // i
. . .

This idea may be a bit confusing. Suppose the source data to cluster has 500 data items and
the number of clusters is set to 3. There are Choose(500, 3) = 20,708,500 possible candidate
sets of the initial three tuples, which is a lot. Suppose each data tuple has four attributes. To
compare all possible pairs of any set of three tuples, there are Choose(3, 2) * 4 = 12
comparisons required, which is quite feasible.

In situations where the number of clusters is very large and the number of attributes is also
large, you can modify GetGoodIndices to examine only adjacent pairs of the candidate tuples.
The program listing at the end of this chapter provides example code for this.

The second initialization option is to use an alternative to the Hamming distance to measure the
difference between two data tuples. Options you may wish to explore include metrics called
cosine similarity, Goodall similarity, and Smirnov similarity.

Method GetGoodIndices concludes by tracking whether the current number of value differences
is greater than the best (largest) found so far, and if so, saving the candidate set of tuple
indices:

51

. . .
 if (numDifferences > largestDiff)
 {
 largestDiff = numDifferences;
 Array.Copy(candidates, result, numClusters);
 }
 } // trial
 return result;
}

Reservoir Sampling

Method GetGoodIndices calls a helper method named Reservoir. This utility method returns n
random, distinct values from 0 to r - 1, which corresponds to n distinct array indices. Returning n
random, distinct array indices is a very common machine learning task, and one that is
surprisingly interesting.

For the demo program, with seven data tuples with indices 0 through 6 (so r = 7), and the
number of clusters set to three (so n = 3), method GetGoodIndices must generate three distinct
values from 0 through 6. There are three common ways to generate n random distinct array
indices: brute force, shuffle-select, and reservoir sampling.

In pseudo-code, the brute force technique to generate n random integers between 0 and r - 1 is:

loop t times
 select n random integers between [0, r-1]
 if all n integers are different
 return the n integers
 end if
 // try again
end loop
return failure

The problem with the brute force approach is that there is no guarantee that you'll ever get n
different values. However, brute force is very effective when the number of integers to generate
(n) is very, very small compared to the range (r). For example, if the goal is to select n = 3
integers between 0 and 9999, the chances of getting a duplicate value among three random
values is small.

In pseudo-code, the shuffle-select technique is:

create a scratch array of sequential integers from 0 through r-1
shuffle the values in the array (using Fisher-Yates)
select and return the first n values in the shuffled array

The problem with the shuffle-select approach is that it uses extra memory for the scratch array.
However, shuffle-select is simple and effective when n is small (say, less than 1,000).

The demo program uses a very clever algorithm called reservoir sampling. In pseudo-code:

52

create a small result array of sequential integers from 0 through n-1
loop for t := n to r-1
 generate a random integer j between [0, t]
 if j < n
 set result[j] := t
end loop
return result

Reservoir sampling is not at all obvious, and is a rare example where the actual code is
probably easier to understand than pseudo-code. The code for method Reservoir is:

private int[] Reservoir(int n, int range)
{
 // select n random indices between [0, range)
 int[] result = new int[n];
 for (int i = 0; i < n; ++i)
 result[i] = i;

 for (int t = n; t < range; ++t)
 {
 int j = rnd.Next(0, t + 1);
 if (j < n)
 result[j] = t;
 }
 return result;
}

Suppose the goal is to generate n = 3 random distinct integers between 0 and 6, inclusive. The
result array is initialized to { 0, 1, 2 }. The first time through the algorithm's loop, t = 3. A

random j is generated between 0 and 3 inclusive. Let’s suppose it is j = 2. Because (j = 2) < (n =
3), result[j = 2] is set to t = 3, so the result array is now { 0, 1, 3 }.

The second time through the loop, t = 4. Suppose generated j = 0. Because (j = 0) < (n = 3),
result[j = 0] is set to t = 4 and result is now { 4, 1, 3 }.

The third time through the loop, t = 5. Suppose generated j = 4. Because (j = 4) is not less than
(n = 3), result is not changed and remains { 4, 1, 3 }.

The fourth time through the loop, t = 6. Suppose generated j = 1. Because (j = 1) < (n = 3),
result[j = 1] is set to 6 and result is now { 4, 6, 3 }. The t-loop terminates and result is

returned.

Clustering Mixed Data

The GACUC clustering algorithm is intended for categorical data items, but it can also be used
to cluster data that contains a mixture of numeric and categorical data. The idea is to first
convert numeric data into categorical data. For example, suppose the data items to be clustered
represent people, and each item has attributes (sex, age, job). For example, the first two data
items might be:

53

male, 28.0, engineer
female, 52.0, accountant

If you convert the raw age data so that ages 0 through 21 are low, ages 22 through 45 are
medium, and ages 46 through 99 are high, the data items become:

male, medium, engineer
female, high, accountant

Now the data is all categorical and the GACUC algorithm can be used. Converting numeric data
to categorical data is called discretizing the data, or binning the data.

With this example data, the GACUC algorithm does not take into account the fact that category
high is closer to category medium than to category low. An unexplored option is to modify the
GACUC algorithm to use categorical data closeness information.

54

Chapter 2 Complete Demo Program Source Code

using System;
using System.Collections.Generic;
namespace ClusterCategorical
{
 class ClusterCatProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("\nBegin categorical data clustering demo\n");

 string[][] rawData = new string[7][];

 rawData[0] = new string[] { "Blue", "Small", "False" };
 rawData[1] = new string[] { "Green", "Medium", "True" };
 rawData[2] = new string[] { "Red", "Large", "False" };
 rawData[3] = new string[] { "Red", "Small", "True" };
 rawData[4] = new string[] { "Green", "Medium", "False" };
 rawData[5] = new string[] { "Yellow", "Medium", "False" };
 rawData[6] = new string[] { "Red", "Large", "False" };

 Console.WriteLine("Raw unclustered data:\n");
 Console.WriteLine(" Color Size Heavy");
 Console.WriteLine("-----------------------------");
 ShowData(rawData);

 int numClusters = 2;
 Console.WriteLine("\nSetting numClusters to " + numClusters);
 int numRestarts = 4;
 Console.WriteLine("Setting numRestarts to " + numRestarts);

 Console.WriteLine("\nStarting clustering using greedy category utility");
 CatClusterer cc = new CatClusterer(numClusters, rawData); // restart version
 double cu;
 int[] clustering = cc.Cluster(numRestarts, out cu);
 Console.WriteLine("Clustering complete\n");

 Console.WriteLine("Final clustering in internal form:");
 ShowVector(clustering, true);

 Console.WriteLine("Final CU value = " + cu.ToString("F4"));

 Console.WriteLine("\nRaw data grouped by cluster:\n");
 ShowClustering(numClusters, clustering, rawData);

 Console.WriteLine("\nEnd categorical data clustering demo\n");
 Console.ReadLine();
 } // Main

 static void ShowData(string[][] matrix) // for tuples
 {
 for (int i = 0; i < matrix.Length; ++i)
 {
 Console.Write("[" + i + "] ");
 for (int j = 0; j < matrix[i].Length; ++j)
 Console.Write(matrix[i][j].ToString().PadRight(8) + " ");
 Console.WriteLine("");
 }

55

 }

 public static void ShowVector(int[] vector, bool newLine) // for clustering
 {
 for (int i = 0; i < vector.Length; ++i)
 Console.Write(vector[i] + " ");
 Console.WriteLine("");
 if (newLine == true)
 Console.WriteLine("");
 }

 static void ShowClustering(int numClusters, int[] clustering, string[][] rawData)
 {
 Console.WriteLine("-----------------------------");
 for (int k = 0; k < numClusters; ++k) // display by cluster
 {
 for (int i = 0; i < rawData.Length; ++i) // each tuple
 {
 if (clustering[i] == k) // curr tuple i belongs to curr cluster k
 {
 Console.Write(i.ToString().PadLeft(2) + " ");
 for (int j = 0; j < rawData[i].Length; ++j)
 {
 Console.Write(rawData[i][j].ToString().PadRight(8) + " ");
 }
 Console.WriteLine("");
 }
 }
 Console.WriteLine("-----------------------------");
 }
 }

 } // Program

 public class CatClusterer
 {
 private int numClusters; // number of clusters
 private int[] clustering; // index = a tuple, value = cluster ID
 private int[][] dataAsInts; // ex: red = 0, blue = 1, green = 2
 private int[][][] valueCounts; // scratch to compute CU [att][val][count](sum)
 private int[] clusterCounts; // number tuples assigned to each cluster (sum)
 private Random rnd; // for several randomizations

 public CatClusterer(int numClusters, string[][] rawData)
 {
 this.numClusters = numClusters;
 MakeDataMatrix(rawData); // convert strings to ints into this.dataAsInts[][]
 Allocate(); // allocate all arrays & matrices (no initialize values)
 }

 public int[] Cluster(int numRestarts, out double catUtility)
 {
 // restart version
 int numRows = dataAsInts.Length;
 double currCU, bestCU = 0.0;
 int[] bestClustering = new int[numRows];
 for (int start = 0; start < numRestarts; ++start)
 {
 int seed = start; // use the start index as rnd seed

56

 int[] currClustering = ClusterOnce(seed, out currCU);
 if (currCU > bestCU)
 {
 bestCU = currCU;
 Array.Copy(currClustering, bestClustering, numRows);
 }
 }
 catUtility = bestCU;
 return bestClustering;
 } // Cluster

 private int[] ClusterOnce(int seed, out double catUtility)
 {
 this.rnd = new Random(seed);
 Initialize(); // clustering[] to -1, all counts[] to 0

 int numTrials = dataAsInts.Length; // for initial tuple assignments
 int[] goodIndexes = GetGoodIndices(numTrials); // tuples that are dissimilar
 for (int k = 0; k < numClusters; ++k) // assign first tuples to clusters
 Assign(goodIndexes[k], k);

 int numRows = dataAsInts.Length;
 int[] rndSequence = new int[numRows];
 for (int i = 0; i < numRows; ++i)
 rndSequence[i] = i;
 Shuffle(rndSequence); // present tuples in random sequence

 for (int t = 0; t < numRows; ++t) // main loop. walk through each tuple
 {
 int idx = rndSequence[t]; // index of data tuple to process
 if (clustering[idx] != -1) continue; // tuple clustered by initialization

 double[] candidateCU = new double[numClusters]; // candidate CU values

 for (int k = 0; k < numClusters; ++k) // examine each cluster
 {
 Assign(idx, k); // tentative cluster assignment
 candidateCU[k] = CategoryUtility(); // compute and save the CU
 Unassign(idx, k); // undo tentative assignment
 }

 int bestK = MaxIndex(candidateCU); // greedy. the index is a cluster ID
 Assign(idx, bestK); // now we know which cluster gave the best CU
 } // each tuple

 catUtility = CategoryUtility();
 int[] result = new int[numRows];
 Array.Copy(this.clustering, result, numRows);
 return result;
 } // ClusterOnce

 private void MakeDataMatrix(string[][] rawData)
 {
 int numRows = rawData.Length;
 int numCols = rawData[0].Length;

 this.dataAsInts = new int[numRows][]; // allocate all
 for (int i = 0; i < numRows; ++i)
 dataAsInts[i] = new int[numCols];

57

 for (int col = 0; col < numCols; ++col)
 {
 int idx = 0;
 Dictionary<string, int> dict = new Dictionary<string, int>();
 for (int row = 0; row < numRows; ++row) // build dict for curr col
 {
 string s = rawData[row][col];
 if (dict.ContainsKey(s) == false)
 dict.Add(s, idx++);
 }
 for (int row = 0; row < numRows; ++row) // use dict
 {
 string s = rawData[row][col];
 int v = dict[s];
 this.dataAsInts[row][col] = v;
 }
 }
 return; // explicit return style
 }

 private void Allocate()
 {
 // assumes dataAsInts has been created
 // allocate this.clustering[], this.clusterCounts[], this.valueCounts[][][]
 int numRows = dataAsInts.Length;
 int numCols = dataAsInts[0].Length;

 this.clustering = new int[numRows];
 this.clusterCounts = new int[numClusters + 1]; // last cell is sum

 this.valueCounts = new int[numCols][][]; // 1st dim

 for (int col = 0; col < numCols; ++col) // need # distinct values in each col
 {
 int maxVal = 0;
 for (int i = 0; i < numRows; ++i)
 {
 if (dataAsInts[i][col] > maxVal)
 maxVal = dataAsInts[i][col];
 }
 this.valueCounts[col] = new int[maxVal + 1][]; // 0-based 2nd dim
 }

 for (int i = 0; i < this.valueCounts.Length; ++i) // 3rd dim
 for (int j = 0; j < this.valueCounts[i].Length; ++j)
 this.valueCounts[i][j] = new int[numClusters + 1]; // +1 last cell is sum

 return;
 }

 private void Initialize()
 {
 for (int i = 0; i < clustering.Length; ++i)
 clustering[i] = -1;

 for (int i = 0; i < clusterCounts.Length; ++i)
 clusterCounts[i] = 0;

58

 for (int i = 0; i < valueCounts.Length; ++i)
 for (int j = 0; j < valueCounts[i].Length; ++j)
 for (int k = 0; k < valueCounts[i][j].Length; ++k)
 valueCounts[i][j][k] = 0;

 return;
 }

 private double CategoryUtility() // called by ClusterOnce
 {
 // because CU is called many times use precomputed counts
 int numTuplesAssigned = clusterCounts[clusterCounts.Length - 1]; // last cell

 double[] clusterProbs = new double[this.numClusters];
 for (int k = 0; k < numClusters; ++k)
 clusterProbs[k] = (clusterCounts[k] * 1.0) / numTuplesAssigned;

 // single unconditional prob term
 double unconditional = 0.0;
 for (int i = 0; i < valueCounts.Length; ++i)
 {
 for (int j = 0; j < valueCounts[i].Length; ++j)
 {
 int sum = valueCounts[i][j][numClusters]; // last cell holds sum
 double p = (sum * 1.0) / numTuplesAssigned;
 unconditional += (p * p);
 }
 }

 // conditional terms each cluster
 double[] conditionals = new double[numClusters];
 for (int k = 0; k < numClusters; ++k)
 {
 for (int i = 0; i < valueCounts.Length; ++i) // each att
 {
 for (int j = 0; j < valueCounts[i].Length; ++j) // each value
 {
 double p = (valueCounts[i][j][k] * 1.0) / clusterCounts[k];
 conditionals[k] += (p * p);
 }
 }
 }

 // we have P(Ck), EE P(Ai=Vij|Ck)^2, EE P(Ai=Vij)^2 so we can compute CU easily
 double summation = 0.0;
 for (int k = 0; k < numClusters; ++k)
 summation += clusterProbs[k] * (conditionals[k] - unconditional);
 // E P(Ck) * [EE P(Ai=Vij|Ck)^2 - EE P(Ai=Vij)^2] / n

 return summation / numClusters;
 } // CategoryUtility

 private static int MaxIndex(double[] cus)
 {
 // helper for ClusterOnce. returns index of largest value in array
 double bestCU = 0.0;
 int indexOfBestCU = 0;
 for (int k = 0; k < cus.Length; ++k)
 {

59

 if (cus[k] > bestCU)
 {
 bestCU = cus[k];
 indexOfBestCU = k;
 }
 }
 return indexOfBestCU;
 }

 private void Shuffle(int[] indices) // instance so can use class rnd
 {
 for (int i = 0; i < indices.Length; ++i) // Fisher-Yates shuffle
 {
 int ri = rnd.Next(i, indices.Length); // random index
 int tmp = indices[i];
 indices[i] = indices[ri]; // swap
 indices[ri] = tmp;
 }
 }

 private void Assign(int dataIndex, int clusterID)
 {
 // assign tuple at dataIndex to clustering[] cluster, and
 // update valueCounts[][][], clusterCounts[]
 clustering[dataIndex] = clusterID; // assign

 for (int i = 0; i < valueCounts.Length; ++i) // update valueCounts
 {
 int v = dataAsInts[dataIndex][i]; // att value
 ++valueCounts[i][v][clusterID]; // bump count
 ++valueCounts[i][v][numClusters]; // bump sum
 }
 ++clusterCounts[clusterID]; // update clusterCounts
 ++clusterCounts[numClusters]; // last cell is sum
 }

 private void Unassign(int dataIndex, int clusterID)
 {
 clustering[dataIndex] = -1; // unassign
 for (int i = 0; i < valueCounts.Length; ++i) // update
 {
 int v = dataAsInts[dataIndex][i];
 --valueCounts[i][v][clusterID];
 --valueCounts[i][v][numClusters]; // last cell is sum
 }
 --clusterCounts[clusterID]; // update clusterCounts
 --clusterCounts[numClusters]; // last cell
 }

 private int[] GetGoodIndices(int numTrials)
 {
 // return numClusters indices of tuples that are different
 int numRows = dataAsInts.Length;
 int numCols = dataAsInts[0].Length;
 int[] result = new int[numClusters];

 int largestDiff = -1; // differences for a set of numClusters tuples
 for (int trial = 0; trial < numTrials; ++trial)
 {

60

 int[] candidates = Reservoir(numClusters, numRows);
 int numDifferences = 0; // for these candidates

 for (int i = 0; i < candidates.Length - 1; ++i) // all possible pairs
 {
 for (int j = i + 1; j < candidates.Length; ++j)
 {
 int aRow = candidates[i];
 int bRow = candidates[j];

 for (int col = 0; col < numCols; ++col)
 if (dataAsInts[aRow][col] != dataAsInts[bRow][col])
 ++numDifferences;
 }
 }

 //for (int i = 0; i < candidates.Length - 1; ++i) // only adjacent pairs
 //{
 // int aRow = candidates[i];
 // int bRow = candidates[i+1];
 // for (int col = 0; col < numCols; ++col)
 // if (dataAsInts[aRow][col] != dataAsInts[bRow][col])
 // ++numDifferences;
 //}

 if (numDifferences > largestDiff)
 {
 largestDiff = numDifferences;
 Array.Copy(candidates, result, numClusters);
 }
 } // trial
 return result;
 }

 private int[] Reservoir(int n, int range) // helper for GetGoodIndices
 {
 // select n random indices between [0, range)
 int[] result = new int[n];
 for (int i = 0; i < n; ++i)
 result[i] = i;

 for (int t = n; t < range; ++t)
 {
 int j = rnd.Next(0, t + 1);
 if (j < n)
 result[j] = t;
 }
 return result;
 }
 } // CatClusterer
} // ns

61

Chapter 3 Logistic Regression
Classification

Introduction

Machine learning classification is the process of creating a software system that predicts which
class a data item belongs to. For example, you might want to predict the sex (male or female) of
a person based on features such as height, occupation, and spending behavior. Or you might
want to predict the credit worthiness of a business (low, medium, or high) based on predictors
such as annual revenue, current debt, and so on. In situations where the class to predict has
just two possible values, such as sex, which can be male or female, the problem is called binary
classification. In situations where the dependent class has three or more possible values, the
problem is called a multiclass problem.

Machine learning vocabulary can vary wildly, but problems where the goal is to predict some
numeric value, as opposed to predicting a class, are often called regression problems. For
example, you might want to predict the number of points some football team will score based on
predictors such as opponent, home field advantage factor, average number of points scored in
previous games, and so on. This is a regression problem.

There are many different machine learning approaches to classification. Examples include naive
Bayes classification, probit classification, neural network classification, and decision tree
classification. Perhaps the most common type of classification technique is called logistic
regression classification. In spite of the fact that logistic regression classification contains the
word "regression", it is really a classification technique, not a regression technique. Adding to
the confusion is the fact that logistic regression classification is usually shortened to "logistic
regression," rather than the more descriptive "logistic classification."

The best way to get an understanding of logistic regression classification is to examine the
screenshot in Figure 3-a. The goal of the demo program is to predict whether a hospital patient
will die or not based on three predictors: age, sex, and the result of a kidney test. Because the
class to predict has just two possible values, die or survive, the demo is a binary classification
problem.

All classification techniques use the same general approach. They rely on a set of data with
known input and output values to create some mathematical equation that predicts the value of
the dependent variable based on the independent, or predictor, variables. Then, after the model
has been created, it can be used to predict the result for new data items with unknown outputs.

The demo starts with 30 (artificial) data items. The first two items are:

48.00 1 4.40 0
60.00 -1 7.89 1

62

The dependent variable to predict, Died, is in the last column and is encoded so that 0
represents false, meaning the person survived, and 1 represents true, meaning the person died.
For the feature variables, male is encoded as -1 and female is encoded as +1. The first line of
data means a 48-year-old female, with a kidney test score of 4.40 survived. The second data
item indicates that there was a 60-year-old male with a 7.89 kidney score who died.

Figure 3-a: Logistic Regression Binary Classification

63

After reading the data set into memory, the demo program normalizes the independent
variables (sometimes called x-data) of age and kidney score. This means that the values are
scaled to have roughly the same magnitude so that ages, which have relatively large
magnitudes like 55.0 and 68.0, won't overwhelm kidney scores that have smaller magnitudes
like 3.85 and 6.33. After normalization, the first two data items are now:

-0.74 1 -0.61 0
 0.19 -1 1.36 1

For normalized data, values less than zero indicate below average, and values greater than
zero indicate above average. So for the first data item, the age (-0.74) is below average, and the
kidney score (-0.61) is also below average. For the second data item, both age (+0.19) and
kidney score (+1.36) are above average.

After normalizing the 30-item source data set, the demo program divides the set into two parts:
a training set, which consists of 80% of the items (24 items) and a test set, which has the
remaining 20% (6 items). The split process is done in a way so that data items are randomly
assigned to either the training or test sets. The training data is used to create the prediction
model, and the test data is used after the model has been created to get an estimate of how
accurate the model will be when presented with new data that has unknown output values.

After the training and test sets are generated, the demo creates a prediction model using logistic
regression classification. When using logistic regression classification (or any other kind of
classification), there are several techniques that can be used to find values for the weights that
define the model. The demo program uses a technique called simplex optimization.

The result of the training process is four weights with the values { -4.41, 0.27, -0.52, and 4.51 }.
As you'll see later, the second weight value, 0.27, is associated with the age predictor, the third
weight value, -0.52, is associated with the sex predictor, and the last weight value, 4.51, is
associated with the kidney score predictor. The first weight value, -4.41, is a constant needed by
the model, but is not directly associated with any one specific predictor variable.

After the logistic regression classification model is created, the demo program applies the model
to the training and test data, and computes the predictive accuracy of the model. The model
correctly predicts 95.83% of the training data (which is 23 out of 24 correct) and 83.33% of the
test data (5 out of 6 correct). The 83.33% can be interpreted as an estimate of how accurate the
model will be when presented with new, previously unseen data.

Understanding Logistic Regression Classification

Suppose some raw age, sex, and kidney data is { 50.0, -1, 6.0 }, which represents a 50-year-old
male with a kidney score of 6.0. Here, the data is not normalized to keep the ideas clear. Now
suppose you have four weights: b0 = -7.50, b1 = 0.11, b2 = -0.22, and b3 = 0.33. One possible
way to create a simple linear model would be like so:

Y = b0 + b1(50.0) + b2(-1) + b3(6.0)
 = -7.50 + (0.11)(50.0) + (-0.22)(-1) + (0.33)(6.0)
 = 0.20

64

In other words, you'd multiply each input x-value by an associated weight value, sum those
products, and add a constant. Logistic regression classification extends this idea by using a
more complex math equation that requires a pair of calculations:

Z = b0 + b1(50.0) + b2(-1) + b3(6.0)
Y = 1.0 / (1.0 + e-Z)

In other words, for logistic regression classification, you form a linear combination of weights
and inputs, call that sum Z, and then feed that result to a second equation that involves the
math constant e. The constant e is just a number with value 2.7182818, and it appears in many
math equations, in many different fields.

Figure 3-b: The Logistic Sigmoid Function

The function Y = 1.0 / (1.0 + e-Z) has many important uses in machine learning, and forms the
basis of logistic regression classification. The function is called the logistic sigmoid function, or
sometimes the log sigmoid, or just the sigmoid function for short. The logistic sigmoid function
can accept any Z-value from negative infinity to positive infinity, but the output is always a value

between 0 and 1, as shown in Figure 3-b.

This may be mildly interesting, but what's the point? The idea is that if you have some input x-
values and associated weights (often called the b-values) and you combine them, and then feed
the sum, Z, to the logistic sigmoid function, then the result will be between 0 and 1. This result is
the predicted output value.

An example will clarify. As before, suppose that for a hospital patient, some un-normalized age,
sex, and kidney x-values are { 50.0, -1, 6.0 }, and suppose the b-weights are b0 = -7.50, b1 =
0.11, b2 = -0.22, and b3 = 0.33. And assume that class 0 is "die is false" and class 1 is "die is
true".

65

The logistic regression calculation goes like so:

Z = b0 + b1(50.0) + b2(-1) + b3(6.0)
 = 0.20

Y = 1.0 / (1.0 + e-Z)
 = 1.0 / (1.0 + e-0.20)
 = 0.5498

The final predicted output value (0 or 1) is the one closest to the computed output value.
Because 0.5498 is closer to 1 than to 0, you'd conclude that dependent variable "died" is true.
But if the y-value had been 0.3333 for example, because that value is closer to 0 than to 1,
you'd conclude "died" is false. An equivalent, but slightly less obvious, interpretation is that the
computed output value is the probability of the 1-class.

Now if you have many training data items with known results, you can compute the accuracy of
your model-weights. So the problem now becomes, how do you find the best set of weight
values? The process of finding the set of weight values so that computed output values closely
match the known output values for some set of training data is called training the model. There
are roughly a dozen major techniques that can be used to train a logistic regression
classification model. These include techniques such as simple gradient descent, back-
propagation, particle swarm optimization, and Newton-Raphson. The demo program uses a
technique called simplex optimization.

Demo Program Overall Structure

To create the demo, I launched Visual Studio and selected the new C# console application
template. The demo has no significant .NET version dependencies so any version of Visual
Studio should work.

After the template code loaded into the editor, I removed all using statements at the top of the

source code, except for the single reference to the top-level System namespace. In the Solution
Explorer window, I renamed file Program.cs to the more descriptive LogisticProgram.cs and
Visual Studio automatically renamed class Program to LogisticProgram.

The overall structure of the demo program, with a few minor edits to save space, is presented in
Listing 3-a. The complete program source code is at the end of this chapter. In order to keep
the size of the example code small, and the main ideas as clear as possible, the demo program
omits normal error checking that would be used in production code.

using System;
namespace LogisticRegression
{
 class LogisticProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Begin Logistic Regression Binary Classification demo");

 double[][] data = new double[30][];
 data[0] = new double[] { 48, +1, 4.40, 0 };

66

 data[1] = new double[] { 60, -1, 7.89, 1 };
 . . .
 data[29] = new double[] { 68, -1, 8.38, 1 };

 Console.WriteLine("Raw data: ");
 ShowData(data, 5, 2, true);

 Console.WriteLine("Normalizing age and kidney data");
 int[] columns = new int[] { 0, 2 };
 double[][] means = Normalize(data, columns);

 Console.WriteLine("Normalized data: ");
 ShowData(data, 5, 2, true);

 Console.WriteLine("Creating train (80%) and test (20%) matrices");
 double[][] trainData;
 double[][] testData;
 MakeTrainTest(data, 0, out trainData, out testData);

 Console.WriteLine("Normalized training data: ");
 ShowData(trainData, 3, 2, true);

 int numFeatures = 3;
 LogisticClassifier lc = new LogisticClassifier(numFeatures);
 int maxEpochs = 100;
 double[] bestWeights = lc.Train(trainData, maxEpochs, 33);

 Console.WriteLine("Best weights found:");
 ShowVector(bestWeights, 4, true);

 double trainAccuracy = lc.Accuracy(trainData, bestWeights);
 Console.WriteLine("Prediction accuracy on training data = " +
 trainAccuracy.ToString("F4"));

 double testAccuracy = lc.Accuracy(testData, bestWeights);
 Console.WriteLine("Prediction accuracy on test data = " +
 testAccuracy.ToString("F4"));

 Console.WriteLine("End LR binary classification demo");
 Console.ReadLine();
 } // Main

 static double[][] Normalize(double[][] rawData,
 int[] columns) { . . }
 static void Normalize(double[][] rawData, int[] columns,
 double[][] means) { . . }
 static void MakeTrainTest(double[][] allData, int seed,
 out double[][] trainData, out double[][] testData) { . . }
 static void ShowData(double[][] data, int numRows,
 int decimals, bool indices) { . . }
 } // Program

 public class LogisticClassifier { . . }
}

Listing 3-a: Logistic Regression Classification Demo Program Structure

67

The demo program class has four static helper methods, including two different Normalize
methods. The first Normalize method normalizes the specified columns of a matrix of data and
returns the mean and standard deviation of each column. This will be explained later.

The second Normalize method scales the specified columns of a data matrix using supplied
means and standard deviations that were presumably computed earlier by the first overloaded
Normalize method. Helper method MakeTrainTest accepts a data matrix and returns a random
80% of the data into a training matrix (as an out-parameter) and the remaining 20% of the data
into a test matrix (as a second out-parameter). Helper method ShowData displays the values in
a data matrix to the console shell.

All the classification logic is contained in a single program-defined class named
LogisticRegression. All the program logic is contained in the Main method. The Main method
begins by setting up 30 hard-coded data items (age, sex, kidney score, death) in an array-of-
arrays style matrix:

static void Main(string[] args)
{
 Console.WriteLine("\nBegin Logistic Regression Binary Classification demo");
 double[][] data = new double[30][];
 data[0] = new double[] { 48, +1, 4.40, 0 };
 data[1] = new double[] { 60, -1, 7.89, 1 };
. . .

In a non-demo scenario, you would likely have data stored in a text file and would load the data
into memory using a helper function. Next, the data is displayed:

Console.WriteLine("\nRaw data: \n");
Console.WriteLine(" Age Sex Kidney Died");
Console.WriteLine("=======================================");
ShowData(data, 5, 2, true);

Because the data has been stored directly into a numeric matrix, there is no column header
information available as there likely would be if the data were in a text file, so a crude, hard-
coded header is displayed directly. Next, the data set is normalized and displayed:

Console.WriteLine("Normalizing age and kidney data");
int[] columns = new int[] { 0, 2 };
double[][] means = Normalize(data, columns);
Console.WriteLine("Done");
Console.WriteLine("\nNormalized data: \n");
ShowData(data, 5, 2, true);

The Normalize method will be explained in detail in the next section. Next, the data set is split
into a training matrix and a test matrix:

Console.WriteLine("Creating train (80%) and test (20%) matrices");
double[][] trainData;
double[][] testData;
MakeTrainTest(data, 0, out trainData, out testData);
Console.WriteLine("Done");
Console.WriteLine("\nNormalized training data: \n");
ShowData(trainData, 3, 2, true);

68

Notice that the 80-20 percentage split is hard-coded. A more flexible alternative is to
parameterize the split percentage.

The logistic regression classification is encapsulated in an object that is instantiated like so:

int numFeatures = 3;
Console.WriteLine("Creating LR binary classifier");
LogisticClassifier lc = new LogisticClassifier(numFeatures);

The program-defined LogisticClassifier object requires just a single parameter for the
constructor: the number of features. For the demo, this is 3, for age, sex, and kidney score.
Next, the classifier is trained:

int maxEpochs = 100;
Console.WriteLine("Setting maxEpochs = " + maxEpochs);
Console.WriteLine("Starting training using simplex optimization");
double[] bestWeights = lc.Train(trainData, maxEpochs, 33);
Console.WriteLine("Training complete");
Console.WriteLine("\nBest weights found:");
ShowVector(bestWeights, 4, true);

Most classification training is iterative, and it is surprisingly difficult to know when to stop the
training process. Here, variable maxEpochs sets a limit on the main processing loop. The value

of 100 is artificially small to give a representative demo. The argument of 33 passed to the Train
method is a seed for a random number generator, which is used by the method, as you'll see
shortly. The value 33 was used only because it gave a representative demo.

Method Main concludes by computing the model's classification accuracy:

. . .
 double trainAccuracy = lc.Accuracy(trainData, bestWeights);
 Console.WriteLine("Prediction accuracy on training data = " +
 trainAccuracy.ToString("F4"));

 double testAccuracy = lc.Accuracy(testData, bestWeights);
 Console.WriteLine("Prediction accuracy on test data = " +
 testAccuracy.ToString("F4"));

 Console.WriteLine("\nEnd LR binary classification demo\n");
 Console.ReadLine();
}

Notice the demo does not perform any predictions using the final model. In order to make
predictions using a model that was trained using normalized data, you must use normalized
data. I’ll present an example of this in the next section. Additionally, the demo does not save the
model, because that also would require normalization information.

69

Data Normalization

In theory, when performing logistic regression classification, it's not necessary to normalize your
data. But in practice normalization usually helps to create a good prediction model. There are
two main types of normalization, called Gaussian and min-max. The demo uses Gaussian
normalization, sometimes called z-score normalization (where z is not the same as the
intermediate logistic regression Z value in the previous section).

The motivation for data normalization is simple. You want to deal with situations where some
data items have much larger magnitudes than others. For example, imagine data where one
feature is a person's annual income, with values like 56,000.00, and another feature is the
person's number of children, with values like 2.0. Without normalization, when computing the
intermediate Z value, the contribution of the income value would be much larger than the
contribution of the children value.

Gaussian normalization of the values in some column of data replaces each raw value x with (x
- m) / sd, where m is the column mean and sd is the column standard deviation. Suppose a
feature is a person's age and there are just four values: { 25, 36, 40, 23 }. The mean (average)
of the values is:

m = (25 + 36 + 40 + 23) / 4
 = 124 / 4
 = 31.0

The standard deviation is the square root of the average of squared differences between values
and the mean:

sd = sqrt(((25 - 31.0)2 + (36 - 31.0)2 + (40 - 31.0)2 + (23 - 31.0)2) / 4)
 = sqrt((36.0 + 25.0 + 81.0 + 64.0) / 4)
 = sqrt(51.5)
 = 7.176

So the normalized value for the first age, 25, is: (25 - 31.0) / 7.176 = -0.84. After normalization,
in general, all values will be between about -10.0 and +10.0, and in most cases will be between
-4.0 and +4.0. Any value that is not in this range is extreme and should be investigated.

The demo program has two Normalize methods. The first method accepts a matrix of data, and
an array of columns to normalize. The method normalizes the matrix in place, and returns the
mean and standard deviations of each column in a mini-matrix. The idea is that this information
may be needed later if you want to make predictions about new data, so that the new data can
be normalized using the same information that was used to create the prediction model.

The code for method Normalize begins:

static double[][] Normalize(double[][] rawData, int[] columns)
{
 int numRows = rawData.Length;
 int numCols = rawData[0].Length;
 double[][] result = new double[2][];
 for (int i = 0; i < 2; ++i)
 result[i] = new double[numCols];
. . .

70

The local matrix result will hold the means and standard deviations used during normalization.

That mini-matrix has 2 rows, where the first row holds column means, and the second row holds
column standard deviations. For example, the return result for the demo data is:

57.50 -0.13 5.48 0.33

12.84 0.99 1.78 0.47

This indicates the mean of column 0 (age) is 57.50, the mean of column 1 (sex) is -0.13, the
mean of column 2 (kidney score) is 5.48, and the mean of column 3, the dependent variable
“died”, is 0.33. The second row values are the standard deviations, so the standard deviation of
column 0, age, is 12.84, and so on.

Notice that means and standard deviations are computed for all columns. An alternative is to
compute means and standard deviations just for the specified columns, leaving 0.0 values in
non-normalized columns.

After setting up the return matrix, method Normalize computes and saves the mean of each
column by adding up all column values and dividing by the number of items in the column:

for (int c = 0; c < numCols; ++c)
{
 double sum = 0.0;
 for (int r = 0; r < numRows; ++r)
 sum += rawData[r][c];
 double mean = sum / numRows;
 result[0][c] = mean; // save
. . .

After means have been computed, they can be used to compute the standard deviations:

. . .
 double sumSquares = 0.0;
 for (int r = 0; r < numRows; ++r)
 sumSquares += (rawData[r][c] - mean) * (rawData[r][c] - mean);
 double stdDev = Math.Sqrt(sumSquares / numRows);
 result[1][c] = stdDev;
} // for

Method Normalize finishes by performing the Gaussian normalization on the specified columns
and returning the means and standard deviations mini-matrix result:

. . .
 for (int c = 0; c < columns.Length; ++c)
 {
 int j = columns[c]; // column to normalize
 double mean = result[0][j];
 double stdDev = result[1][j];
 for (int i = 0; i < numRows; ++i)
 rawData[i][j] = (rawData[i][j] - mean) / stdDev;
 }
 return result;
}

71

Notice the Normalize method modifies its input matrix. An alternative would be to return
normalized values in a new matrix. There are two minor downsides to this approach. First, you'd
need twice as much memory because you'd be storing two data matrices instead of just one.
Second, you'd be returning two matrices, the normalized data and the means and standard
deviations mini-matrix, so you'd have to resort to using out-parameters.

Remember, the demo program does not do any predictions. Suppose you have a new patient
whose age is 58, sex is male, and kidney score is 7.00. A prediction for this data item could look
like:

int[] columns = new int[] { 0, 2 };
double[][] means = Normalize(data, columns);
. . .
double[][] unknown = new double[1][];
unknown[0] = new double[] { 58.0, -1.0, 7.00 };
Normalize(unknown, columns, means);
int died = lc.ComputeDependent(unknown[0], bestWeights);
Console.WriteLine("Died = " + died);

First, a one-row matrix named "unknown" is created with the relevant x-data. Notice there is no
value for the "died" dependent variable. The x-data cannot be used as-is because the logistic
regression model is expecting normalized data, not raw data. So the new data matrix is passed
to the overloaded Normalize method, along with the computed means and standard deviation
matrix, to generate normalized new data. This data is fed to a ComputeDependent method
(which will be explained later) along with the weights found during training.

The calling code is a bit clunky. An alternative is to wrap the code in a method named
something like "Predict" that could be called like this:

double[] unknown = new double[] { 58.0, -1.0, 7.00 };
int died = Predict(unknown, columns, means, bestWeights);

When writing custom machine learning code, there's often a tradeoff between keeping the
number of helper methods small (but requiring somewhat awkward calling code) and writing
numerous easy-to-call helpers (but requiring a lot more code).

Creating Training and Test Data

One approach to creating a logistic regression classification model is to simply train the model
using all available data. However, it's better in most situations to hold out some of the data so
that the model can be evaluated to give an estimate of its accuracy when presented with new,
previously unseen data.

As it turns out, if you train long enough, it's almost always possible to create a model that
predicts perfectly or nearly perfectly, but the model will typically fail miserably when presented
with new data. This problem is called model over-fitting. Holding out some test data can help
avoid over-fitting; even if you create a model that has 100% accuracy on training data, if the
model has poor accuracy on the test data, it's almost certainly not a good predictive model, and
so you need to revise the model.

72

Helper method MakeTrainTest is conceptually simple, but it involves some fairly subtle
programming techniques. Imagine you have some data named “allData”, with nine rows and
four columns, stored in an array-of-arrays style matrix, as shown in the left part of Figure 3-c.
The first step is to make a copy of the matrix. Although you could create a replica of the source
matrix values, a more efficient approach is to make a copy by reference.

The reference copy is named "copy" in the figure. Note that for clarity, although the arrows in
the cells of matrix copy are shown pointing to the arrow-cells in matrix allData, the arrows in

copy are really pointing to the data cells in allData. For example, the arrow in copy[0][] is

shown pointing to cell allData[0][] when in fact it should be pointing to the cell containing the

5.3 value.

Figure 3-c: Creating Training and Test Matrices by Reference

After creating a reference copy, the next step is to scramble the order of the copy. This is shown
on the right. After scrambling, the last step is to create training and test matrices by reference.
In Figure 3-c, the first row of training data points to the first cell in the copy, which in turn points
to the second row of the data. In other words, trainData[0][0] is 4.9, trainData[0][1] is

3.7, and so on. Similarly, testData[0][0] is 6.4, testData[0][1] is 3.9 and so on.

The definition of method MakeTrainTest begins with:

static void MakeTrainTest(double[][] allData, int seed,
 out double[][] trainData, out double[][] testData)
{
 Random rnd = new Random(seed);
 int totRows = allData.Length;
 int numTrainRows = (int)(totRows * 0.80);
 int numTestRows = totRows - numTrainRows;
. . .

The local Random object will be used to scramble row order. It accepts a seed parameter, so
you can generate different results by passing in a different seed value. Here, for simplicity, the
percentage split is hard-coded as 80-20. A more flexible approach is to pass the train
percentage as a parameter, being careful to handle 0.80 versus 80.0 values for 80 percent.

73

The reference copy is made:

double[][] copy = new double[allData.Length][];
for (int i = 0; i < copy.Length; ++i)
 copy[i] = allData[i];

When working with references, even simple code can be tricky. For example, allData[0][0] is

a cell value, like 4.5, but allData[0] is a reference to the first row of data.

Next, the rows of the copy matrix are scrambled, also by reference:

for (int i = 0; i < copy.Length; ++i)
{
 int r = rnd.Next(i, copy.Length);
 double[] tmp = copy[r];
 copy[r] = copy[i];
 copy[i] = tmp;
}

The scramble code uses the clever Fisher-Yates mini-algorithm. The net result is that the
references in the copy matrix will be reordered randomly as suggested by the colored arrows in
Figure 3-c. Method MakeTrainTest finishes by assigning the first 80% of scrambled rows in the
copy matrix to the training out-matrix and the remaining rows to the test out-matrix:

. . .
 for (int i = 0; i < numTrainRows; ++i)
 trainData[i] = copy[i];

 for (int i = 0; i < numTestRows; ++i)
 testData[i] = copy[i + numTrainRows];
}

Defining the LogisticClassifier Class

The structure of the program-defined LogisticClassifier class is presented in Listing 3-b. The
class has three data members. Variable numFeatures holds the number of predictor variables

for a problem. Array weights holds the values used to compute outputs.

public class LogisticClassifier
{
 private int numFeatures;
 private double[] weights;
 private Random rnd;

 public LogisticClassifier(int numFeatures) { . . }
 public double[] Train(double[][] trainData, int maxEpochs, int seed) { . . }

 private double[] ReflectedWts(double[] centroidWts, double[] worstWts) { . . }
 private double[] ExpandedWts(double[] centroidWts, double[] worstWts) { . . }
 private double[] ContractedWts(double[] centroidWts, double[] worstWts) { . . }
 private double[] RandomSolutionWts() { . . }
 private double Error(double[][] trainData, double[] weights) { . . }

74

 public double ComputeOutput(double[] dataItem, double[] weights) { . . }
 public int ComputeDependent(double[] dataItem, double[] weights) { . . }
 public double Accuracy(double[][] trainData, double[] weights) { . . }

 private class Solution : IComparable<Solution> { . . }
}

Listing 3-b: The LogisticClassifier Class

Class member rnd is a Random object that is used during the training process to generate

random possible solutions.

The class exposes a single constructor and four public methods. Method Train uses a technique
called simplex optimization to find values for the weights array, so that computed output values
closely match the known output values in the training data.

Method ComputeOutput accepts some x-data and a set of weight values and returns a raw
value between 0.0 and 1.0. This output is used by the training method to compute error. Method
ComputeDependent is similar to method ComputeOutput, except that it returns a 0 or 1 result.
This output is used to compute accuracy. Public method Accuracy accepts a set of weights and
a matrix of either training data or test data, and returns the percentage of correct predictions.

There are five private methods: Error, RandomSolutionWts, ReflectedWts, ExpandedWts, and
ContractedWts. All of these methods are used by method Train when searching for the best set
of weight values.

The LogisticClassifier contains a nested private class named Solution. This class is used during
training to define potential solutions, that is, potential best sets of weight values. The Solution
class could have been defined outside the LogisticClassifier class, but you can define Solution
as a nested class for a slightly cleaner design.

The LogisticClassifier constructor is very simple:

public LogisticClassifier(int numFeatures)
{
 this.numFeatures = numFeatures; // number predictors
 this.weights = new double[numFeatures + 1]; // [0] = b0 constant
}

If you review how the logistic regression calculation works, you'll see that the number of weight
b-values has to be one more than the number of feature x-values because each x-value has an
associated weight and there is one additional weight for the b0 constant. An alternative design is
to store the b0 value in a separate variable.

Method ComputeOutput is simple, but does have one subtle point. The method is defined:

public double ComputeOutput(double[] dataItem, double[] weights)
{
 double z = 0.0;
 z += weights[0]; // b0 constant
 for (int i = 0; i < weights.Length - 1; ++i) // data might include Y

75

 z += (weights[i + 1] * dataItem[i]); // skip first weight
 return 1.0 / (1.0 + Math.Exp(-z));
}

For flexibility, the method accepts an array parameter named dataItem, which can represent a

row of training data or test data, including a Y-value in the last cell. However, the Y-value is not
used to compute output.

Method ComputeDependent is defined:

public int ComputeDependent(double[] dataItem, double[] weights)
{
 double sum = ComputeOutput(dataItem, weights);
 if (sum <= 0.5)
 return 0;
 else
 return 1;
}

Here, instead of returning a raw output value, for example 0.5678, the method returns the
corresponding Y-value, which is either 0 or 1. The choice of <= instead of < is arbitrary, and has

no significant effect on the operation of the classifier. A design alternative is to return a third
value indicating the decision is too close to call:

if (sum <= 0.45)
 return 0;
else if (sum >= 0.45)
 return 1;
else
 return -1; // undecided

Using this alternative would require quite a few changes to the demo program code logic.

Error and Accuracy

The ultimate goal of a prediction model is accuracy, which is the percentage of correct
predictions made divided by the total number of predictions made. But when searching for the
best set of weight values, it is better to use a measure of error rather than accuracy. Suppose
some set of weights yields these results for five training items:

Training Y Computed Output Computed Y Result
--
 0 0.4980 0 correct
 1 0.5003 1 correct
 0 0.9905 1 wrong
 1 0.5009 1 correct
 0 0.4933 0 correct

76

The model is correct on four of the five items for an accuracy of 80%. But on the four correct
predictions, the output is just barely correct, meaning output is just barely under 0.5 when giving
a 0 for Y and just barely above 0.5 when giving a 1 for Y. And on the third training item, which is
incorrectly predicted, the computed output of 0.9905 is not close at all to the desired output of
0.00. Now suppose a second set of weights yields these results:

Training Y Computed Output Computed Y Result
--
 0 0.0008 0 correct
 1 0.9875 1 correct
 0 0.5003 1 wrong
 1 0.9909 1 correct
 0 0.5105 0 wrong

These weights are correct on three out of five for an accuracy of 60%, which is less than the
80% of the first weights, but the three correct predictions are "very correct" (computed Y is close
to 0.00 or 1.00) and the two wrong predictions are just barely wrong. In short, when training,
predictive accuracy is too coarse, so using error is better.

The definition of method Accuracy begins:

public double Accuracy(double[][] trainData, double[] weights)
{
 int numCorrect = 0;
 int numWrong = 0;
 int yIndex = trainData[0].Length - 1;
. . .

Counters for the number of correct and wrong predictions are initialized, and the index in a row
of training data where the dependent y-value is located is specified. This is the last column. The
term trainData[0] is the first row of data, but because all rows of data are assumed to be the

same, any row could have been used. Each row of data in the demo has four items, so the
value of Length - 1 will be 3, which is the index of the last column. Next, the training data is

examined, and its accuracy is computed and then returned:

. . .
 for (int i = 0; i < trainData.Length; ++i)
 {
 double computed = ComputeDependent(trainData[i], weights);
 double desired = trainData[i][yIndex]; // 0.0 or 1.0
 if (computed == desired)
 ++numCorrect;
 else
 ++numWrong;
 }
 return (numCorrect * 1.0) / (numWrong + numCorrect);
}

77

Notice that local variable computed is declared as type double, even though method

ComputeDependent returns an integer 0 or 1. So an implicit conversion from 0 or 1, to 0.0 or 1.0
is performed. Therefore the condition computed == desired is comparing two values of type

double for exact equality, which can be risky. However, the overhead of comparing the two
values for "very-closeness" rather than exact equality is usually not worth the performance
price:

double closeness = 0.00000001; // often called 'epsilon' in ML
if (Math.Abs(computed - desired) < closeness)
 ++numCorrect;
else
 ++numWrong;

The ability to control when and if to take shortcuts like this to improve performance is a major
advantage of writing custom machine learning code, compared to using an existing system
written by someone else where you don't have access to source code.

Method Error is very similar to method Accuracy:

private double Error(double[][] trainData, double[] weights)
{
 int yIndex = trainData[0].Length - 1;
 double sumSquaredError = 0.0;
 for (int i = 0; i < trainData.Length; ++i)
 {
 double computed = ComputeOutput(trainData[i], weights);
 double desired = trainData[i][yIndex]; // ex: 0.0 or 1.0
 sumSquaredError += (computed - desired) * (computed - desired);
 }
 return sumSquaredError / trainData.Length;
}

Method Error computes the mean squared error (sometimes called mean square error), which is
abbreviated MSE in machine learning literature. Suppose there are just three training data items
that yield these results:

Training Y Computed Output

 0 0.3000
 1 0.8000
 0 0.1000

The sum of squared errors is:

sse = (0 - 0.3000)2 + (1 - 0.8000)2 + (0 - 0.1000)2
 = 0.09 + 0.04 + 0.01
 = 0.14

And the mean squared error is:

MSE = 0.14 / 3
 = 0.4667

78

A minor alternative is to use root mean squared error (RMSE), which is just the square root of
the MSE.

Understanding Simplex Optimization

The most difficult technical challenge of any classification system is implementing the training
sub-system. Recall that there are roughly a dozen major approaches with names like simple
gradient descent, Newton-Raphson, back-propagation, and L-BFGS. All of these algorithms are
fairly complex. The demo program uses a technique called simplex optimization.

Loosely speaking, a simplex is a triangle. The idea behind simplex optimization is to start with
three possible solutions. One possible solution will be "best" (meaning smallest error), one will
be "worst" (largest error), and the third is called "other". Next, simplex optimization creates three
new possible solutions called "expanded", "reflected", and "contracted". Each of these is
compared against the current worst solution, and if any of the new candidates is better (smaller
error) than the current worst, the worst solution is replaced.

Expressed in very high-level pseudo-code, simplex optimization is:

create best, worst, other possible solutions
loop until done
 create expanded, reflected, contracted candidate replacements
 if any are better than worst, replace worst
 else if none are better, adjust worst and other solutions
end loop

Simplex optimization is illustrated in Figure 3-d. In a simple case where a solution consists of
two values, like (1.23, 4.56), you can think of a solution as a point on the (x, y) plane. The left
side of Figure 3-d shows how three new candidate solutions are generated from the current
best, worst, and “other” solutions.

Figure 3-d: Simplex Optimization

79

First, a centroid is computed. The centroid is the average of the best and “other” solutions. In
two dimensions, this is a point half-way between the "other" and best points. Next, an imaginary
line is created, which starts at the worst point and extends through the centroid. Now, the
contracted candidate is between the worst and centroid points. The reflected candidate is on the
imaginary line, past the centroid. And the expanded candidate is past the reflected point.

In each iteration of simplex optimization, if one of the expanded, reflected, or contracted
candidates is better than the current worst solution, worst is replaced by that candidate. If none
of the three candidates generated are better than the worst solution, the current worst and
"other" solutions are moved toward the best solution to points somewhere between their current
position and the best solution, as shown in the right-hand side of Figure 3-d.

After each iteration, a new virtual "best-other-worst" triangle is formed, getting closer and closer
to an optimal solution. If a snapshot of each triangle is taken, when looked at sequentially, the
moving triangles resemble a pointy blob moving across the plane in a way that resembles a
single-celled amoeba. For this reason, simplex optimization is sometimes called amoeba
method optimization.

There are many variations of simplex optimization, which vary in how far the contracted,
reflected, and expanded candidate solutions are from the current centroid, and the order in
which the candidate solutions are checked to see if each is better than the current worst
solution. The most common variation of simplex optimization is called the Nelder-Mead
algorithm. The demo program uses a simpler variation that does not have a specific name.

In pseudo-code, the variation of simplex optimization used in the demo program is:

randomly initialize best, worst, other solutions
loop maxEpochs times
 create centroid from worst and other
 create expanded
 if expanded is better than worst, replace worst with expanded,
 continue loop
 create reflected
 if reflected is better than worst, replace worst with reflected,
 continue loop
 create contracted
 if contracted is better than worst, replace worst with contracted,
 continue loop
 create a random solution
 if random solution is better than worst, replace worst,
 continue loop
 shrink worst and other toward best
end loop
return best solution found

Simplex optimization, like all other machine learning optimization algorithms, has pros and cons.
This is why there are so many different optimization techniques, each with dozens of variations.
In real-life scenarios, somewhat surprisingly, no machine learning optimization technique
guarantees you will find the optimal solution, if one exists. However, simplex optimization is
relatively simple to implement and usually, but not always, works well in practice.

80

Training

The goal of the logistic regression classifier training process is to find a set of weight values so
that when presented with training data, the computed output values closely match the known
output values. In other words, the goal of training is to minimize the error between computed
output values and known output values. This is called a numerical optimization problem
because you want to optimize weight values to minimize error.

Class method Train uses a local class named Solution as part of the simplex optimization. A
solution represents a possible solution to the problem of finding the weight values that minimize
error. A Solution object is a collection of weights and the mean squared error associated with
those weights. The definition is presented in Listing 3-c.

private class Solution : IComparable<Solution>
{
 public double[] weights;
 public double error;

 public Solution(int numFeatures)
 {
 this.weights = new double[numFeatures + 1];
 this.error = 0.0;
 }

 public int CompareTo(Solution other) // low-to-high error
 {
 if (this.error < other.error)
 return -1;
 else if (this.error > other.error)
 return 1;
 else
 return 0;
 }
}

Listing 3-c: The Solution Helper Class Definition

The key concept of simplex optimization is that there is a best, worst, and "other" solution, so
the three current solutions must be sorted by error, from smallest error to largest. Notice that
helper class Solution derives from the IComparable interface. What his means is that a
collection of Solution objects can be sorted automatically.

Using a private nested class that derives from the IComparable interface is a rather exotic
approach. When programming, simple is almost always better than exotic and clever (in my
opinion, anyway), but in this situation, the simplification of the code in the Train method is worth
the overhead of a not-very-straightforward programming technique.

The definition of method Train begins with:

public double[] Train(double[][] trainData, int maxEpochs, int seed)
{
 this.rnd = new Random(seed);
 Solution[] solutions = new Solution[3]; // best, worst, other

81

 for (int i = 0; i < 3; ++i)
 {
 solutions[i] = new Solution(numFeatures);
 solutions[i].weights = RandomSolutionWts();
 solutions[i].error = Error(trainData, solutions[i].weights);
 }
. . .

First, the class member Random object rnd is instantiated with a seed value. This instantiation

is performed inside method Train rather than in the constructor, so that if you wanted, you could
restart training several times, using a different seed value each time to get different results.

Next, an array of Solution objects is instantiated. The whole point of going to the trouble of
creating a Solution object is so that an array of solutions can be sorted to give the best, worst,
and "other". The Solution object in each cell of the solutions array is instantiated by calling the

constructor, and then a helper method named RandomSolutionWts supplies the values for the
weights, and method Error supplies the mean squared error.

Next, the main training loop is created:

int best = 0;
int other = 1;
int worst = 2;
int epoch = 0;
while (epoch < maxEpochs)
{
 ++epoch;
. . .

Local variables best, other, and worst are set up for clarity. For example, the expression

solutions[2].weights[0]

is the first weight value in the worst solution because Solution objects are ordered from smallest
error to largest. Using the local variable instead, the expression would be:

solutions[worst].weights[0]

This is a bit more clear, and likely less error-prone. The local variable epoch is just a loop

counter. Inside the main loop, the three possible solutions are sorted and the centroid is
computed:

Array.Sort(solutions);
double[] bestWts = solutions[0].weights; // convenience only
double[] otherWts = solutions[1].weights;
double[] worstWts = solutions[2].weights;
double[] centroidWts = CentroidWts(otherWts, bestWts);

This is where the private Solution class shows its worth, by allowing the array of Solution
objects to be sorted automatically, from smallest error to largest, simply by calling the built-in
Array.Sort method. As before, for convenience and clarity, the weights arrays of the three
Solution objects receive local aliases bestWts, otherWts, and worstWts. Helper method

CentroidWts computes a centroid based on the weights in the current best and "other" solutions.

82

Next, the expanded candidate replacement for the current worst solution is created. If the
expanded candidate is better than the worst solution, the worst solution is replaced:

double[] expandedWts = ExpandedWts(centroidWts, worstWts);
double expandedError = Error(trainData, expandedWts);
if (expandedError < solutions[worst].error)
{
 Array.Copy(expandedWts, worstWts, numFeatures + 1);
 solutions[worst].error = expandedError;
 continue;
}

Replacing the current worst solution requires two steps. First, the weights have to be copied
from the candidate into worst, and then the error term has to be copied in. This is allowed
because Solution class members weights and error were declared with public scope.

As a very general rule of thumb, using the continue statement inside a while-loop can be a bit

tricky, because many statements in the loop after the continue statement are skipped. In this

situation, however, using the continue statement leads to cleaner and more easily modified

code than the alternative of a deeply nested if-else-if structure.

If the expanded candidate is not better than the worst solution, the reflected candidate is
created and examined:

double[] reflectedWts = ReflectedWts(centroidWts, worstWts);
double reflectedError = Error(trainData, reflectedWts);
if (reflectedError < solutions[worst].error)
{
 Array.Copy(reflectedWts, worstWts, numFeatures + 1);
 solutions[worst].error = reflectedError;
 continue;
}

If the reflected candidate is not better than the worst solution, the contracted candidate is
created and examined:

double[] contractedWts = ContractedWts(centroidWts, worstWts);
double contractedError = Error(trainData, contractedWts);
if (contractedError < solutions[worst].error)
{
 Array.Copy(contractedWts, worstWts, numFeatures + 1);
 solutions[worst].error = contractedError;
 continue;
}

At this point, none of the three primary candidate solutions are better than the worst solution, so
a random solution is tried:

double[] randomSolWts = RandomSolutionWts();
double randomSolError = Error(trainData, randomSolWts);
if (randomSolError < solutions[worst].error)
{
 Array.Copy(randomSolWts, worstWts, numFeatures + 1);

83

 solutions[worst].error = randomSolError;
 continue;
}

Generating a candidate solution and computing its associated mean squared error is a relatively
expensive operation because every training data item must be processed. So an alternative to
consider is to attempt a random solution every so often, say, just once for every 100 iterations:

if (epoch % 100 == 0)
{
 // create and examine a random solution
}

Now at this point, no viable replacement for the worst solution was found, so the simplex shrinks
in on itself by moving the worst and "other" solutions toward the best solution:

. . .
 for (int j = 0; j < numFeatures + 1; ++j)
 worstWts[j] = (worstWts[j] + bestWts[j]) / 2.0;
 solutions[worst].error = Error(trainData, solutions[worst].weights);

 for (int j = 0; j < numFeatures + 1; ++j)
 otherWts[j] = (otherWts[j] + bestWts[j]) / 2.0;
 solutions[other].error = Error(trainData, otherWts);

} // while

Here, the current worst and "other" solutions move halfway toward the best solution, as
indicated by the 2.0 constants in the code. The definition of method Train concludes with:

. . .
 Array.Copy(solutions[best].weights, this.weights, this.numFeatures + 1);
 return this.weights;
}

The weights in the best Solution object are copied into class member array weights. A

reference to the class member weights is returned so that the best weights can be used by

other methods, such as ComputeDependent in particular, to make predictions on new,
previously unseen data. An alternative to returning the best weights by reference is to make a
new array, copy the values from the best solution into that array, and return by value.

Helper method CentroidWts computes the centroid used by simplex optimization. Recall the
centroid is an average of the current best and "other" solutions:

private double[] CentroidWts(double[] otherWts, double[] bestWts)
{
 double[] result = new double[this.numFeatures + 1];
 for (int i = 0; i < result.Length; ++i)
 result[i] = (otherWts[i] + bestWts[i]) / 2.0;
 return result;
}

84

Helper method ExpandedWts is defined:

private double[] ExpandedWts(double[] centroidWts, double[] worstWts)
{
 double gamma = 2.0;
 double[] result = new double[this.numFeatures + 1];
 for (int i = 0; i < result.Length; ++i)
 result[i] = centroidWts[i] + (gamma * (centroidWts[i] - worstWts[i]));
 return result;
}

Here, local variable gamma controls how far the expanded candidate is from the centroid. Larger

values of gamma tend to produce larger changes in the solutions in the beginning of processing

at the expense of unneeded calculations later in the processing. Smaller values of gamma tend

to produce smaller changes initially, but fewer calculations later.

Helper methods ReflectedWts and ContractedWts use the exact same pattern as method
ExpandedWts:

private double[] ReflectedWts(double[] centroidWts, double[] worstWts)
{
 double alpha = 1.0;
 double[] result = new double[this.numFeatures + 1];
 for (int i = 0; i < result.Length; ++i)
 result[i] = centroidWts[i] + (alpha * (centroidWts[i] - worstWts[i]));
 return result;
}

private double[] ContractedWts(double[] centroidWts, double[] worstWts)
{
 double rho = -0.5;
 double[] result = new double[this.numFeatures + 1];
 for (int i = 0; i < result.Length; ++i)
 result[i] = centroidWts[i] + (rho * (centroidWts[i] - worstWts[i]));
 return result;
}

In method ReflectedWts, with an alpha value of 1.0, multiplying by alpha obviously has no

effect, so in a production scenario you could just eliminate alpha altogether. There are several

ways to improve the efficiency of these three helper methods, though at the minor expense of
some loss of clarity. For example, notice that each method computes the quantity
centroidWts[i] - worstWts[i]. This common value could be computed just once and then

passed to each method along the lines of:

for (int i = 0; i < numFeatures + 1; ++i)
 delta[i] = centroidWts[i] - worstWts[i];

double[] expandedWts = ExpandedWts(delta);
. . .
double[] reflectedWts = ReflectedWts(delta);
// etc.

85

Helper method RandomSolutionWts is used to initialize the three current solutions (best, worst,
other), and is also used, optionally, to probe when no replacement candidate (expanded,
reflected, contracted) is better than the current worst solution. The method is defined:

private double[] RandomSolutionWts()
{
 double[] result = new double[this.numFeatures + 1];
 double lo = -10.0;
 double hi = 10.0;
 for (int i = 0; i < result.Length; ++i)
 result[i] = (hi - lo) * rnd.NextDouble() + lo;
 return result;
}

The method returns an array of weights where each value is a random number between -10.0
and +10.0, for example { 3.33, -0.17, 7.92, -5.05 }. Because it is assumed that all input x-values
have been normalized, the majority of x-values will be between -10.0 and +10.0, so this range is
also used for the weight values. Because these two values are hard-coded, in method
RandomSolutionWts you could replace term (hi - lo) with the constant 20.0, and replace

variable lo with -10.0. If your x-values are not normalized, it is quite possible that constraining

weight values to the interval [-10.0, +10.0] could lead to a poor model when the magnitudes of
different features vary greatly.

The Train method iterates a fixed number of times specified by the maxEpochs variable:

int epoch = 0;
while (epoch < maxEpochs)
{
 ++epoch;
 // search for best weights
}

An important, recurring theme in most machine learning training algorithms is that there are
many ways to control when the main training loop terminates. For simplex optimization, there
are two important options to consider. First, you may want to exit early if the Euclidean distance
(difference) between the current best and worst solutions reaches some very low value
indicating the simplex has collapsed on itself. Second, you may want to exit only when the mean
squared error drops below some acceptable level, indicating your model is likely good enough.

Other Scenarios

This chapter explains binary logistic regression classification, where the dependent variable can
take one of just two possible values. There are several techniques you can use to extend
logistic regression to situations where the dependent variable can take one of three or more
values, for example, predicting a person's political affiliation of Democrat, Republican, or
Independent. The simplest approach is called one-versus-all. You would run logistic regression
for Democrat versus "others”, run a second time with Republican versus "others", and run a
third time with Independent versus "others". That said, logistic regression classification is most
often used for binary problems.

86

Logistic regression classification can handle problems where the predictor variables are
numeric, such as the kidney score feature in the demo program, or categorical, such as the sex
feature in the demo. For a categorical x-variable with two possible values, such as sex, the
values are encoded as -1 or +1. For x-variables that have three or more possible values, the
trick is to use a technique called 1-of-(N-1) encoding. For example, if three predictor values are
"small","medium", and "large", the values would be encoded as (1, 0), (0, 1), and (-1, -1),
respectively.

87

Chapter 3 Complete Demo Program Source Code

using System;
namespace LogisticRegression
{
 class LogisticProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("\nBegin Logistic Regression Binary Classification demo");
 Console.WriteLine("Goal is to predict death (0 = false, 1 = true)");

 double[][] data = new double[30][];
 data[0] = new double[] { 48, +1, 4.40, 0 };
 data[1] = new double[] { 60, -1, 7.89, 1 };
 data[2] = new double[] { 51, -1, 3.48, 0 };
 data[3] = new double[] { 66, -1, 8.41, 1 };
 data[4] = new double[] { 40, +1, 3.05, 0 };
 data[5] = new double[] { 44, +1, 4.56, 0 };
 data[6] = new double[] { 80, -1, 6.91, 1 };
 data[7] = new double[] { 52, -1, 5.69, 0 };
 data[8] = new double[] { 56, -1, 4.01, 0 };
 data[9] = new double[] { 55, -1, 4.48, 0 };
 data[10] = new double[] { 72, +1, 5.97, 0 };
 data[11] = new double[] { 57, -1, 6.71, 1 };
 data[12] = new double[] { 50, -1, 6.40, 0 };
 data[13] = new double[] { 80, -1, 6.67, 1 };
 data[14] = new double[] { 69, +1, 5.79, 0 };
 data[15] = new double[] { 39, -1, 5.42, 0 };
 data[16] = new double[] { 68, -1, 7.61, 1 };
 data[17] = new double[] { 47, +1, 3.24, 0 };
 data[18] = new double[] { 45, +1, 4.29, 0 };
 data[19] = new double[] { 79, +1, 7.44, 1 };
 data[20] = new double[] { 44, -1, 2.55, 0 };
 data[21] = new double[] { 52, +1, 3.71, 0 };
 data[22] = new double[] { 80, +1, 7.56, 1 };
 data[23] = new double[] { 76, -1, 7.80, 1 };
 data[24] = new double[] { 51, -1, 5.94, 0 };
 data[25] = new double[] { 46, +1, 5.52, 0 };
 data[26] = new double[] { 48, -1, 3.25, 0 };
 data[27] = new double[] { 58, +1, 4.71, 0 };
 data[28] = new double[] { 44, +1, 2.52, 0 };
 data[29] = new double[] { 68, -1, 8.38, 1 };

 Console.WriteLine("\nRaw data: \n");
 Console.WriteLine(" Age Sex Kidney Died");
 Console.WriteLine("=======================================");
 ShowData(data, 5, 2, true);

 Console.WriteLine("Normalizing age and kidney data");
 int[] columns = new int[] { 0, 2 };
 double[][] means = Normalize(data, columns); // normalize, save means and stdDevs
 Console.WriteLine("Done");

 Console.WriteLine("\nNormalized data: \n");
 ShowData(data, 5, 2, true);

 Console.WriteLine("Creating train (80%) and test (20%) matrices");
 double[][] trainData;

88

 double[][] testData;
 MakeTrainTest(data, 0, out trainData, out testData);
 Console.WriteLine("Done");

 Console.WriteLine("\nNormalized training data: \n");
 ShowData(trainData, 3, 2, true);

 //Console.WriteLine("\nFirst 3 rows and last row of normalized test data: \n");
 //ShowData(testData, 3, 2, true);

 int numFeatures = 3; // number of x-values (age, sex, kidney)
 Console.WriteLine("Creating LR binary classifier");
 LogisticClassifier lc = new LogisticClassifier(numFeatures);

 int maxEpochs = 100; // gives a representative demo
 Console.WriteLine("Setting maxEpochs = " + maxEpochs);
 Console.WriteLine("Starting training using simplex optimization");
 double[] bestWeights = lc.Train(trainData, maxEpochs, 33); // 33 = 'nice' demo
 Console.WriteLine("Training complete");

 Console.WriteLine("\nBest weights found:");
 ShowVector(bestWeights, 4, true);

 double trainAccuracy = lc.Accuracy(trainData, bestWeights);
 Console.WriteLine("Prediction accuracy on training data = " +
 trainAccuracy.ToString("F4"));

 double testAccuracy = lc.Accuracy(testData, bestWeights);
 Console.WriteLine("Prediction accuracy on test data = " +
 testAccuracy.ToString("F4"));

 //double[][] unknown = new double[1][];
 //unknown[0] = new double[] { 58.0, -1.0, 7.00 };
 //Normalize(unknown, columns, means);
 //int died = lc.ComputeDependent(unknown[0], bestWeights);
 //Console.WriteLine("Died = " + died);

 Console.WriteLine("\nEnd LR binary classification demo\n");
 Console.ReadLine();
 } // Main

 static double[][] Normalize(double[][] rawData, int[] columns)
 {
 // return means and sdtDevs of all columns for later use
 int numRows = rawData.Length;
 int numCols = rawData[0].Length;

 double[][] result = new double[2][]; // [0] = mean, [1] = stdDev
 for (int i = 0; i < 2; ++i)
 result[i] = new double[numCols];

 for (int c = 0; c < numCols; ++c)
 {
 // means of all cols
 double sum = 0.0;
 for (int r = 0; r < numRows; ++r)
 sum += rawData[r][c];
 double mean = sum / numRows;
 result[0][c] = mean; // save

89

 // stdDevs of all cols
 double sumSquares = 0.0;
 for (int r = 0; r < numRows; ++r)
 sumSquares += (rawData[r][c] - mean) * (rawData[r][c] - mean);
 double stdDev = Math.Sqrt(sumSquares / numRows);
 result[1][c] = stdDev;
 }

 // normalize
 for (int c = 0; c < columns.Length; ++c)
 {
 int j = columns[c]; // column to normalize
 double mean = result[0][j]; // mean of the col
 double stdDev = result[1][j];
 for (int i = 0; i < numRows; ++i)
 rawData[i][j] = (rawData[i][j] - mean) / stdDev;
 }
 return result;
 }

 static void Normalize(double[][] rawData, int[] columns, double[][] means)
 {
 // normalize columns using supplied means and standard devs
 int numRows = rawData.Length;
 for (int c = 0; c < columns.Length; ++c) // each specified col
 {
 int j = columns[c]; // column to normalize
 double mean = means[0][j];
 double stdDev = means[1][j];
 for (int i = 0; i < numRows; ++i) // each row
 rawData[i][j] = (rawData[i][j] - mean) / stdDev;
 }
 }

 static void MakeTrainTest(double[][] allData, int seed,
 out double[][] trainData, out double[][] testData)
 {
 Random rnd = new Random(seed);
 int totRows = allData.Length;
 int numTrainRows = (int)(totRows * 0.80); // 80% hard-coded
 int numTestRows = totRows - numTrainRows;
 trainData = new double[numTrainRows][];
 testData = new double[numTestRows][];

 double[][] copy = new double[allData.Length][]; // ref copy of all data
 for (int i = 0; i < copy.Length; ++i)
 copy[i] = allData[i];

 for (int i = 0; i < copy.Length; ++i) // scramble order
 {
 int r = rnd.Next(i, copy.Length); // use Fisher-Yates
 double[] tmp = copy[r];
 copy[r] = copy[i];
 copy[i] = tmp;
 }
 for (int i = 0; i < numTrainRows; ++i)
 trainData[i] = copy[i];

90

 for (int i = 0; i < numTestRows; ++i)
 testData[i] = copy[i + numTrainRows];
 } // MakeTrainTest

 static void ShowData(double[][] data, int numRows,
 int decimals, bool indices)
 {
 for (int i = 0; i < numRows; ++i)
 {
 if (indices == true)
 Console.Write("[" + i.ToString().PadLeft(2) + "] ");
 for (int j = 0; j < data[i].Length; ++j)
 {
 double v = data[i][j];
 if (v >= 0.0)
 Console.Write(" "); // '+'
 Console.Write(v.ToString("F" + decimals) + " ");
 }
 Console.WriteLine("");
 }
 Console.WriteLine(". . .");
 int lastRow = data.Length - 1;
 if (indices == true)
 Console.Write("[" + lastRow.ToString().PadLeft(2) + "] ");
 for (int j = 0; j < data[lastRow].Length; ++j)
 {
 double v = data[lastRow][j];
 if (v >= 0.0)
 Console.Write(" "); // '+'
 Console.Write(v.ToString("F" + decimals) + " ");
 }
 Console.WriteLine("\n");
 }

 static void ShowVector(double[] vector, int decimals, bool newLine)
 {
 for (int i = 0; i < vector.Length; ++i)
 Console.Write(vector[i].ToString("F" + decimals) + " ");
 Console.WriteLine("");
 if (newLine == true)
 Console.WriteLine("");
 }
 } // Program

 public class LogisticClassifier
 {
 private int numFeatures; // number of independent variables aka features
 private double[] weights; // b0 = constant
 private Random rnd;

 public LogisticClassifier(int numFeatures)
 {
 this.numFeatures = numFeatures; // number of features/predictors
 this.weights = new double[numFeatures + 1]; // [0] = b0 constant
 }

 public double[] Train(double[][] trainData, int maxEpochs, int seed)
 {

91

 // sort 3 solutions (small error to large)
 // compute centroid
 // if expanded is better than worst replace
 // else if reflected is better than worst, replace
 // else if contracted is better than worst, replace
 // else if random is better than worst, replace
 // else shrink

 this.rnd = new Random(seed); // so we can implement restart if wanted

 Solution[] solutions = new Solution[3]; // best, worst, other

 // initialize to random values
 for (int i = 0; i < 3; ++i)
 {
 solutions[i] = new Solution(numFeatures);
 solutions[i].weights = RandomSolutionWts();
 solutions[i].error = Error(trainData, solutions[i].weights);
 }

 int best = 0; // for solutions[idx].error
 int other = 1;
 int worst = 2;

 int epoch = 0;
 while (epoch < maxEpochs)
 {
 ++epoch;
 Array.Sort(solutions); // [0] = best, [1] = other, [2] = worst
 double[] bestWts = solutions[0].weights; // convenience only
 double[] otherWts = solutions[1].weights;
 double[] worstWts = solutions[2].weights;

 double[] centroidWts = CentroidWts(otherWts, bestWts); // an average

 double[] expandedWts = ExpandedWts(centroidWts, worstWts);
 double expandedError = Error(trainData, expandedWts);
 if (expandedError < solutions[worst].error) // expanded better than worst?
 {
 Array.Copy(expandedWts, worstWts, numFeatures + 1); // replace worst
 solutions[worst].error = expandedError;
 continue;
 }

 double[] reflectedWts = ReflectedWts(centroidWts, worstWts);
 double reflectedError = Error(trainData, reflectedWts);
 if (reflectedError < solutions[worst].error) // relected better than worst?
 {
 Array.Copy(reflectedWts, worstWts, numFeatures + 1);
 solutions[worst].error = reflectedError;
 continue;
 }

 double[] contractedWts = ContractedWts(centroidWts, worstWts);
 double contractedError = Error(trainData, contractedWts);
 if (contractedError < solutions[worst].error) // contracted better than worst?
 {
 Array.Copy(contractedWts, worstWts, numFeatures + 1);
 solutions[worst].error = contractedError;

92

 continue;
 }

 double[] randomSolWts = RandomSolutionWts();
 double randomSolError = Error(trainData, randomSolWts);
 if (randomSolError < solutions[worst].error)
 {
 Array.Copy(randomSolWts, worstWts, numFeatures + 1);
 solutions[worst].error = randomSolError;
 continue;
 }

 // couldn't find a replacement for worst so shrink
 // worst -> towards best
 for (int j = 0; j < numFeatures + 1; ++j)
 worstWts[j] = (worstWts[j] + bestWts[j]) / 2.0;
 solutions[worst].error = Error(trainData, worstWts);

 // 'other' -> towards best
 for (int j = 0; j < numFeatures + 1; ++j)
 otherWts[j] = (otherWts[j] + bestWts[j]) / 2.0;
 solutions[other].error = Error(trainData, otherWts);

 } // while

 // copy best weights found, return by reference
 Array.Copy(solutions[best].weights, this.weights, this.numFeatures + 1);
 return this.weights;
 }

 private double[] CentroidWts(double[] otherWts, double[] bestWts)
 {
 double[] result = new double[this.numFeatures + 1];
 for (int i = 0; i < result.Length; ++i)
 result[i] = (otherWts[i] + bestWts[i]) / 2.0;
 return result;
 }

 private double[] ExpandedWts(double[] centroidWts, double[] worstWts)
 {
 double gamma = 2.0; // how far from centroid
 double[] result = new double[this.numFeatures + 1];
 for (int i = 0; i < result.Length; ++i)
 result[i] = centroidWts[i] + (gamma * (centroidWts[i] - worstWts[i]));
 return result;
 }

 private double[] ReflectedWts(double[] centroidWts, double[] worstWts)
 {
 double alpha = 1.0; // how far from centroid
 double[] result = new double[this.numFeatures + 1];
 for (int i = 0; i < result.Length; ++i)
 result[i] = centroidWts[i] + (alpha * (centroidWts[i] - worstWts[i]));
 return result;
 }

 private double[] ContractedWts(double[] centroidWts, double[] worstWts)
 {
 double rho = -0.5;

93

 double[] result = new double[this.numFeatures + 1];
 for (int i = 0; i < result.Length; ++i)
 result[i] = centroidWts[i] + (rho * (centroidWts[i] - worstWts[i]));
 return result;
 }

 private double[] RandomSolutionWts()
 {
 double[] result = new double[this.numFeatures + 1];
 double lo = -10.0;
 double hi = 10.0;
 for (int i = 0; i < result.Length; ++i)
 result[i] = (hi - lo) * rnd.NextDouble() + lo;
 return result;
 }

 private double Error(double[][] trainData, double[] weights)
 {
 // mean squared error using supplied weights
 int yIndex = trainData[0].Length - 1; // y-value (0/1) is last column
 double sumSquaredError = 0.0;
 for (int i = 0; i < trainData.Length; ++i) // each data
 {
 double computed = ComputeOutput(trainData[i], weights);
 double desired = trainData[i][yIndex]; // ex: 0.0 or 1.0
 sumSquaredError += (computed - desired) * (computed - desired);
 }
 return sumSquaredError / trainData.Length;
 }

 public double ComputeOutput(double[] dataItem, double[] weights)
 {
 double z = 0.0;

 z += weights[0]; // the b0 constant
 for (int i = 0; i < weights.Length - 1; ++i) // data might include Y
 z += (weights[i + 1] * dataItem[i]); // skip first weight
 return 1.0 / (1.0 + Math.Exp(-z));
 }

 public int ComputeDependent(double[] dataItem, double[] weights)
 {
 double sum = ComputeOutput(dataItem, weights);

 if (sum <= 0.5)
 return 0;
 else
 return 1;
 }

 public double Accuracy(double[][] trainData, double[] weights)
 {
 int numCorrect = 0;
 int numWrong = 0;
 int yIndex = trainData[0].Length - 1;
 for (int i = 0; i < trainData.Length; ++i)
 {
 double computed = ComputeDependent(trainData[i], weights); // implicit cast
 double desired = trainData[i][yIndex]; // 0.0 or 1.0

94

 if (computed == desired) // risky?
 ++numCorrect;
 else
 ++numWrong;

 //double closeness = 0.00000001;
 //if (Math.Abs(computed - desired) < closeness)
 // ++numCorrect;
 //else
 // ++numWrong;
 }
 return (numCorrect * 1.0) / (numWrong + numCorrect);
 }

 private class Solution : IComparable<Solution>
 {
 public double[] weights; // a potential solution
 public double error; // MSE of weights

 public Solution(int numFeatures)
 {
 this.weights = new double[numFeatures + 1]; // problem dim + constant
 this.error = 0.0;
 }

 public int CompareTo(Solution other) // low-to-high error
 {
 if (this.error < other.error)
 return -1;
 else if (this.error > other.error)
 return 1;
 else
 return 0;
 }
 } // Solution

 } // LogisticClassifier
} // ns

95

Chapter 4 Naive Bayes Classification

Introduction

Most machine learning classification techniques work strictly with numeric data. For these
techniques, any non-numeric predictor values, such as male and female, must be converted to
numeric values, such as -1 and +1. Naive Bayes is a classification technique that is an
exception. It classifies and makes predictions with categorical data.

The "naive" (which means unsophisticated in ordinary usage) in naive Bayes means that all the
predictor features are assumed to be independent. For example, suppose you want to predict a
person's political inclination, conservative or liberal, based on the person's job (such as cook,
doctor, etc.), sex (male or female), and income (low, medium, or high). Naive Bayes assumes
job, sex, and income are all independent. This is obviously not true in many situations. In this
example, job and income are almost certainly related. In spite of the crude independence
assumption, naive Bayes classification is often very effective when working with categorical
data.

The "Bayes" refers to Bayes’ theorem. Bayes’ theorem is a fairly simple equation characterized
by a "given" condition to find values such as "the probability that a person is a doctor, given that
they are a political conservative." The ideas behind Bayes’ theorem are very deep, conceptually
and philosophically, but fortunately, applying the theorem when performing naive Bayes
classification is relatively simple in principle (although the implementation details are a bit
tricky).

A good way to understand naive Bayes classification, and to see where this chapter is headed,
is to examine the screenshot of a demo program, shown in Figure 4-a. The goal of the demo
program is to predict the political inclination (conservative or liberal) of a person based on his or
her job (analyst, barista, cook, or doctor), sex (male, female), and annual income (low, medium,
high). Notice each feature is categorical, not numeric.

The demo program starts with 30 (artificially constructed) data items. The first two items are:

analyst male high conservative
barista female low liberal

The independent X predictor variables, job, sex, and income, are in the first three columns, and
the dependent Y variable to predict, politics, is in the last column.

The demo splits the 30-item data set into an 80% (24 data items) training data set and a 20% (6
data items) test data set in such a way that the data items are randomly assigned to one of the
two sets. The training data set is used to construct the naive Bayes predictive model, and the
test data set is used to give an estimate of the model's accuracy when presented with new,
previously unseen data.

Next, the demo uses the training data and naive Bayes mathematics to construct a predictive
model. Behind the scenes, each feature-column is assumed to be independent.

96

After creating the model, the demo computes the model's accuracy on the training data set and
on the test data set. The model correctly predicts 91.67% of the training items (22 out of 24) and
83.33% of the test items (5 out of 6).

Figure 4-a: Naive Bayes Classification Demo Program

Next, the demo program uses the model to predict the political inclination of a hypothetical
person who has a job as a barista, is a female, and has a medium income. According to the
model, the probability that the hypothetical person has a liberal inclination is 0.6550 and the
probability that the person is a conservative is 0.3450; therefore, the unknown person is
predicted to be a liberal.

97

The sections that follow will describe how naive Bayes classification works, and present and
explain in detail the code for the demo program. Although there are existing systems and API
sets that can perform naive Bayes classification, being able to write your own prediction system
gives you total control of the many possible implementation options, avoids unforeseen legal
issues, and can give you a good understanding of how other systems work so you can use them
more effectively.

Understanding Naive Bayes

Suppose, as in the demo program, you want to predict the political inclination (conservative or
liberal) of a person whose job is barista, sex is female, and income is medium. You would
compute the probability that the person is a conservative, and the probability that the person is a
liberal, and then predict the outcome with the higher probability.

Expressed mathematically, the problem is to find these two values:

P(conservative) = P(conservative | barista & female & medium)

P(liberal) = P(liberal | barista & female & medium)

The top equation is sometimes read as, "the probability that Y is conservative, given that X is
barista and female and medium." Similarly, the bottom equation is, "the probability that Y is
liberal, given that X is barista and female and medium."

To compute these probabilities, quantities that are sometimes called partials are needed. The
partial (denoted PP) for the first dependent variable is:

PP(conservative) =
P(barista | conservative) * P(female | conservative) * P(medium | conservative) *
P(conservative)

Similarly, the partial for the second dependent variable is:

PP(liberal) =
P(barista | liberal) * P(female | liberal) * P(medium | liberal) * P(liberal)

If these two partials can somehow be computed, then the two probabilities needed to make a
prediction are:

P(conservative) = PP(conservative) / (PP(conservative) + PP(liberal))

P(liberal) = PP(liberal) / (PP(conservative) + PP(liberal))

Notice the denominator is the same in each case. This term is sometimes called the evidence.
The challenge is to find the two partials. In this example, each partial has four terms multiplied
together. Consider the first term in PP(conservative), which is P(barista | conservative), read as
"the probability of a barista given that the person is a conservative." Bayes’ theorem gives:

P(barista | conservative) = Count(barista & conservative) / Count(conservative)

98

Here, Count is just a simple count of the number of applicable data items. In essence, this
equation looks only at those people who are conservative, and finds what percentage of them
are baristas. The quantity Count(barista & conservative) is called a joint count.

The next two terms for the partial for conservative, P(female | conservative) and PP(medium |
conservative), can be found in the same way:

P(female | conservative) = Count(female & conservative) / Count(conservative)
P(medium | conservative) = Count(medium & conservative) / Count(conservative)

The last term for the partial of conservative is P(conservative), in words, "the probability that a
person is a conservative." This can be found easily:

P(conservative) = Count(conservative) / (Count(conservative) + Count(liberal))

In other words, the probability that a person is a conservative is just the number of people who
are conservatives, divided by the total number of people.

Putting this all together, if the problem is to find the probability that a person is a conservative
and also the probability that the person is a liberal, if the person is a female barista with medium
income, you need the partial for conservative and the partial for liberal. The partial for
conservative is:

PP(conservative) =

P(barista | conservative) * P(female | conservative) * P(medium | conservative) *
P(conservative) =

Count(barista & conservative) / Count(conservative) *
Count(female & conservative) / Count(conservative) *
Count(medium & conservative) / Count(conservative) *
Count(conservative) / (Count(conservative) + Count(liberal))

And the partial for liberal is:

PP(liberal) =

P(barista | liberal) * P(female | liberal) * P(medium | liberal) * P(liberal) =

Count(barista & liberal) / Count(liberal) *
Count(female & liberal) / Count(liberal) *
Count(medium & liberal) / Count(liberal) *
Count(liberal) / (Count(conservative) + Count(liberal))

And the two probabilities are:

P(conservative) = PP(conservative) / (PP(conservative) + PP(liberal))

P(liberal) = PP(liberal) / (PP(conservative) + PP(liberal))

99

Each piece of the puzzle is just a simple count, but there are many pieces. If you review the
calculations carefully, you'll note that to compute any possible probability, for example P(liberal |
cook & male & low) or P(conservative | analyst & female & high), you need the joint counts of
every feature value with every dependent value, like "doctor & conservative", "male & liberal",
"low & conservative", and so on. You also need the count of each dependent value.

To predict the political inclination of a female barista with medium income, the demo program
computes P(conservative | barista & female & medium) and P(liberal | barista & female &
medium) as follows.

First, the program scans the 24-item training data and finds all the relevant joint counts, and
adds 1 to each count. The results are:

Count(barista & conservative) = 3 + 1 = 4
Count(female & conservative) = 3 + 1 = 4
Count(medium & conservative) = 11 + 1 = 12
Count(barista & liberal) = 2 + 1 = 3
Count(female & liberal) = 8 + 1 = 9
Count(medium & liberal) = 5 + 1 = 6

If you refer back to how partials are computed, you'll see they consist of several joint count
terms multiplied together. If any joint count is 0, the entire product will be 0, and the calculation
falls apart. Adding 1 to each joint count prevents this, and is called Laplacian smoothing.

Next, the program scans the 24-item training data and calculates the counts of the dependent
variables and adds 3 (the number of features) to each:

Count(conservative) = 15 + 3 = 18
Count(liberal) = 9 + 3 = 12

Adding the number of features, 3 in this case, to each dependent variable count balances the 1
added to each of the three joint counts. Now the partials are computed like so:

PP(conservative) =

Count(barista & conservative) / Count(conservative) *
Count(female & conservative) / Count(conservative) *
Count(medium & conservative) / Count(conservative) *
Count(conservative) / (Count(conservative) + Count(liberal)) =

= (4 / 18) * (4 / 18) * (12 / 18) * (18 / 30)

= 0.2222 * 0.2222 * 0.6667 * 0.6000

= 0.01975 (rounded).

PP(liberal) =

Count(barista & liberal) / Count(liberal) *
Count(female & liberal) / Count(liberal) *
Count(medium & liberal) / Count(liberal) *
Count(liberal) / (Count(conservative) + Count(liberal)) =

= (3 / 12) * (9 / 12) * (6 / 12) * (12 / 30)

100

= 0.2500 * 0.7500 * 0.5000 * 0.4000

= 0.03750.

Using the partials, the final probabilities are computed:

P(conservative) = PP(conservative) / (PP(conservative) + PP(liberal))
 = 0.01975 / (0.01975 + 0.03750)
 = 0.3450 (rounded)

P(liberal) = PP(liberal) / (PP(conservative) + PP(liberal))
 = 0.03750 / (0.01975 + 0.03750)
 = 0.6550 (rounded)

If you refer to the screenshot in Figure 4-a, you'll see these two probability values displayed.
Because the probability of liberal is greater than the probability of conservative, the prediction is
that a female barista with medium income will most likely be a political liberal.

Demo Program Structure

The overall structure of the demo program, with a few minor edits to save space, is presented in
Listing 4-a. To create the demo program, I launched Visual Studio and created a new C#
console application project named NaiveBayes.

After the template code loaded into the editor, I removed all using statements at the top of the

source code, except for the reference to the top-level System namespace, and the one to the
Collections.Generic namespace. In the Solution Explorer window, I renamed file Program.cs to
the more descriptive BayesProgram.cs, and Visual Studio automatically renamed class Program
to BayesProgram.

using System;
using System.Collections.Generic;
namespace NaiveBayes
{
 class BayesProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Begin Naive Bayes classification demo");
 Console.WriteLine("Goal is to predict (liberal/conservative) from job, " +
 "sex and income");

 string[][] rawData = new string[30][];
 rawData[0] = new string[] { "analyst", "male", "high", "conservative" };
 // etc.
 rawData[29] = new string[] { "barista", "male", "medium", "conservative" };

 Console.WriteLine("The raw data is: ");
 ShowData(rawData, 5, true);

 Console.WriteLine("Splitting data into 80%-20% train and test sets");
 string[][] trainData;
 string[][] testData;

101

 MakeTrainTest(rawData, 15, out trainData, out testData); // seed = 15
 Console.WriteLine("Done");

 Console.WriteLine("Training data: ");
 ShowData(trainData, 5, true);

 Console.WriteLine("Test data: ");
 ShowData(testData, 5, true);

 Console.WriteLine("Creating Naive Bayes classifier object");
 BayesClassifier bc = new BayesClassifier();
 bc.Train(trainData);
 Console.WriteLine("Done");

 double trainAccuracy = bc.Accuracy(trainData);
 Console.WriteLine("Accuracy of model on train data = " +
 trainAccuracy.ToString("F4"));
 double testAccuracy = bc.Accuracy(testData);
 Console.WriteLine("Accuracy of model on test data = " +
 testAccuracy.ToString("F4"));

 Console.WriteLine("Predicting politics for job = barista, sex = female, " +
 "income = medium ");
 string[] features = new string[] { "barista", "female", "medium" };

 string liberal = "liberal";
 double pLiberal = bc.Probability(liberal, features);
 Console.WriteLine("Probability of liberal = " +
 pLiberal.ToString("F4"));

 string conservative = "conservative";
 double pConservative = bc.Probability(conservative, features);
 Console.WriteLine("Probability of conservative = " +
 pConservative.ToString("F4"));

 Console.WriteLine("End Naive Bayes classification demo ");
 Console.ReadLine();
 } // Main

 static void MakeTrainTest(string[][] allData, int seed,
 out string[][] trainData, out string[][] testData) { . . }

 static void ShowData(string[][] rawData, int numRows, bool indices) { . . }
 } // Program

 public class BayesClassifier { . . }
} // ns

Listing 4-a: Naive Bayes Demo Program Structure

The demo program class has two static helper methods. Method MakeTrainTest randomly splits
the source data into an 80% training set and 20% test data. The 80-20 split is hard-coded, and
you might want to parameterize the percentage of training data. Helper method ShowData
displays an array-of-arrays style matrix of string values to the shell.

102

All the Bayes classification logic is contained in a single program-defined class named
BayesClassifier. All the program logic is contained in the Main method. The Main method begins
by setting up 30 hard-coded (job, sex, income, politics) data items in an array-of-arrays style
matrix:

static void Main(string[] args)
{
 Console.WriteLine("\nBegin Naive Bayes classification demo");
 Console.WriteLine("Goal is to predict (liberal/conservative) from job, " +
 "sex and income\n");
 string[][] rawData = new string[30][];
 rawData[0] = new string[] { "analyst", "male", "high", "conservative" };
 rawData[1] = new string[] { "barista", "female", "low", "liberal" };
 // etc.
 rawData[29] = new string[] { "barista", "male", "medium", "conservative" };
. . .

In most realistic scenarios, your source data would be stored in a text file, and you would load it
into a matrix in memory using a helper method named something like LoadData. Here, the
dependent variable, politics, is assumed to be in the last column of the data matrix.

Next, the demo displays a part of the source data, and then creates the training and test sets:

Console.WriteLine("The raw data is: \n");
ShowData(rawData, 5, true);

Console.WriteLine("Splitting data into 80%-20% train and test sets");
string[][] trainData;
string[][] testData;
MakeTrainTest(rawData, 15, out trainData, out testData);
Console.WriteLine("Done \n");

The 5 argument passed to method ShowData is the number of rows to display, not including the
last line of data, which is always displayed by default. The 15 argument passed to method
MakeTrainTest is used as a seed value for a Random object, which randomizes how data items
are assigned to either the training or test sets.

Next, the demo displays the first five, and last line, of the training and test sets:

Console.WriteLine("Training data: \n");
ShowData(trainData, 5, true);

Console.WriteLine("Test data: \n");
ShowData(testData, 5, true);

The true argument passed to ShowData directs the method to display row indices. In order to
see the entire training data set so you can see how Bayes joint counts were calculated in the
previous section, you could pass 23 as the number of rows.

Next, the classifier is created and trained:

Console.WriteLine("Creating Naive Bayes classifier object");
Console.WriteLine("Training classifier using training data");

103

BayesClassifier bc = new BayesClassifier();
bc.Train(trainData);
Console.WriteLine("Done \n");

Most of the work is done by method Train. In the case of naive Bayes, the Train method scans
through the training data and calculates all the joint counts between feature values (like "doctor"
and "high") and dependent values ("conservative" or "liberal"). The Train method also calculates
the count of each dependent variable value.

After the model finishes the training process, the accuracy of the model on the training and test
sets are calculated and displayed like so:

double trainAccuracy = bc.Accuracy(trainData);
Console.WriteLine("Accuracy of model on train data = " +
trainAccuracy.ToString("F4"));
double testAccuracy = bc.Accuracy(testData);
Console.WriteLine("Accuracy of model on test data = " +
testAccuracy.ToString("F4"));

Next, the demo indirectly makes a prediction by computing the probability that a female barista
with medium income is a liberal:

Console.WriteLine("\nPredicting politics for job = barista, sex = female, "
 + "income = medium \n");
string[] features = new string[] { "barista", "female", "medium" };

string liberal = "liberal";
double pLiberal = bc.Probability(liberal, features);
Console.WriteLine("Probability of liberal = " + pLiberal.ToString("F4"));

Note that because this is a binary classification problem, only one probability is needed to make
a classification decision. If the probability of either liberal or conservative is greater than 0.5,
then because the sum of the probabilities of liberal and conservative is 1.0, the probability of the
other political inclination must be less than 0.5, and vice versa.

The demo concludes by computing the probability that a female barista with medium income is
a conservative:

. . .
 string conservative = "conservative";
 double pConservative = bc.Probability(conservative, features);
 Console.WriteLine("Probability of conservative = " + pConservative.ToString("F4"));

 Console.WriteLine("\nEnd Naive Bayes classification demo\n");
 Console.ReadLine();
} // Main

An option to consider is to write a class method Predicted, which returns the dependent variable
with higher probability.

104

Defining the BayesClassifer Class

The structure of the program-defined class BayesClassifier is presented in Listing 4-b. The
class has three data members and exposes four public methods. The key to understanding the
implementation so that you can modify it if necessary to meet your own needs, is to understand
the three data structures. The class data structures are illustrated in Figure 4-b.

public class BayesClassifier
{
 private Dictionary<string, int>[] stringToInt;
 private int[][][] jointCounts;
 private int[] dependentCounts;

 public BayesClassifier() { . . }
 public void Train(string[][] trainData) { . . }
 public double Probability(string yValue, string[] xValues) { . . }
 public double Accuracy(string[][] data) { . . }
}

Listing 4-b: The BayesClassifier Class Structure

Data member stringToInt is an array of Dictionary objects. There is one Dictionary object for

each column of data, and each Dictionary maps a string value, such as "barista" or
"conservative", to a zero-based integer. For example, stringToInt[0]["doctor"] returns the

integer value for feature 0 (job), value "doctor". The zero-based integer is used as an index into
the other data structures.

Figure 4-b: Naive Bayes Key Data Structures

105

The integer index value for a string feature value is the order in which the feature value is
encountered when the training method scans the training data. For example, for the demo
program, the first five lines of the training data generated by method MakeTrainTest are:

[0] doctor male medium conservative
[1] cook female low liberal
[2] cook female low liberal
[3] analyst male high conservative
[4] barista male medium conservative

When method Train scans the first column of the training data, it will assign "doctor" = 0, "cook"

= 1, "analyst" = 2, and "barista" = 3. Similarly, after scanning, the values "male" = 0, "female" =
1, "medium" = 0, "low" = 1, "high" = 2, "conservative" = 0, and "liberal" = 1 will be stored into the
stringToInt Dictionary objects. Note that these assignments are likely to change if method

MakeTrainTest uses a different seed value and generates a different set of training data.

Class data member jointCounts holds the joint count of each possible pair of feature value

and dependent value. For the demo example, there are a total of nine feature values: analyst,
barista, cook, doctor, male, female, low, medium, and high. There are two dependent values:
conservative and liberal. Therefore there are a total of 9 * 2 = 18 joint counts for the example:
(analyst & conservative), (analyst & liberal), (barista & conservative) . . . , (high & liberal).

The expression jointCounts[2][0][1] holds the count of training items where feature 2

(income) equals value 0 (medium), and dependent 1 (liberal). Recall that each joint count has 1
added to avoid multiplication by zero (Laplacian smoothing).

Class member dependentCounts holds the number of each dependent variable. For example,

the expression dependentCounts[0] holds the number of training items where the dependent

value is 0 (conservative). Recall that each cell in array dependentCounts has 3 (the number of

features for the problem) added to balance the 1 added to each joint count.

The class constructor is short and simple:

public BayesClassifier()
{
 this.stringToInt = null;
 this.jointCounts = null;
 this.dependentCounts = null;
}

In many OOP implementation scenarios, a class constructor allocates memory for the key
member arrays and matrices. However, for naive Bayes, the number of cells to allocate in each
of the three data structures will not be known until the training data is presented, so method
Train will perform allocation.

One design alternative to consider is to pass the training data to the constructor. This design
has some very subtle issues, both favorable and unfavorable, compared to having the training
method perform allocation. A second design alternative is to pass the constructor integer
parameters that hold the number of features, the number of distinct values in each feature, and
the number of distinct dependent variable values.

106

The Training Method

Many machine classification algorithms work by creating some mathematical function that
accepts feature values that are numeric and returns a numeric value that represents the
predicted class. Examples of math-equation based algorithms include logistic regression
classification, neural network classification, perceptron classification, support vector machine
classification, and others. In these algorithms, the training process typically involves finding the
values for a set of numeric constants, usually called the weights, which are used by the
predicting equation.

Naive Bayes classification training does not search for a set of weights. Instead, the training
simply scans the training data and calculates joint feature-dependent counts, and the counts of
the dependent variable. These counts are used by the naive Bayes equations to compute the
probability of a dependent class, given a set of feature values. In this sense, naive Bayes
training is relatively simple.

The definition of method Train begins with:

public void Train(string[][] trainData)
{
 int numRows = trainData.Length;
 int numCols = trainData[0].Length;
 this.stringToInt = new Dictionary<string, int>[numCols];
. . .

Method Train works directly with an array-of-arrays style matrix of string values. An alternative is
to preprocess the training data, and convert each categorical value, such as "doctor", into its
corresponding integer value (0) and store this data in an integer matrix.

The array of Dictionary objects is allocated with the number of columns, and so includes the
dependent variable, political inclination, in the demo. An important assumption is that the
dependent variable is located in the last column of the training matrix.

Next, the dictionaries for each feature are instantiated and populated:

for (int col = 0; col < numCols; ++col)
{
 stringToInt[col] = new Dictionary<string, int>();

 int idx = 0;
 for (int row = 0; row < numRows; ++row)
 {
 string s = trainData[row][col];
 if (stringToInt[col].ContainsKey(s) == false) // first time seen
 {
 stringToInt[col].Add(s, idx); // ex: doctor -> 0
 ++idx; // prepare for next string
 }
 } // each row
} // each col

107

The training matrix is processed column by column. As each new feature value is discovered in
a column, its index, in variable idx, is saved. The .NET generic Dictionary collection is fairly

sophisticated. The purpose of storing each value's index is so that the index can be looked up
quickly. An alternative is to store each distinct column value in a string array. Then the cell index
is the value's index. But this approach would require a linear search through the string array.

Next, the jointCounts data structure is allocated like this:

this.jointCounts = new int[numCols - 1][][]; // number features

for (int c = 0; c < numCols - 1; ++c) // not y-column
{
 int count = this.stringToInt[c].Count;
 jointCounts[c] = new int[count][];
}

for (int i = 0; i < jointCounts.Length; ++i)
 for (int j = 0; j < jointCounts[i].Length; ++j)
 jointCounts[i][j] = new int[2]; // binary classification

For me at least, when working with data structures such as jointCounts, it's absolutely

necessary to sketch a diagram, similar to the one in Figure 4-b, to avoid making mistakes.
Working from left to right, the first dimension of jointCounts is allocated with the number of

features (three in the demo). Then each of those references is allocated with the number of
distinct values for that feature. For example, feature 0, job, has four distinct values. The number
of distinct values is stored as the Count property of the string-to-int Dictionary collection for the
feature.

The last dimension of jointCounts is allocated with hard-coded size 2. This makes the class

strictly a binary classifier. To extend the implementation to a multiclass classifier, you'd just
replace the 2 with the number of distinct dependent variable values:

int numDependent = stringToInt[stringToInt.Length - 1].Count;
jointCounts[i][j] = new int[numDependent];

Next, each cell in jointCounts is initialized with 1 to avoid any cell being 0, which would cause

trouble:

for (int i = 0; i < jointCounts.Length; ++i)
 for (int j = 0; j < jointCounts[i].Length; ++j)
 for (int k = 0; k < jointCounts[i][j].Length; ++k)
 jointCounts[i][j][k] = 1;

Working with a data structure that has three index dimensions is not trivial, and can take some
time to figure out. Next, method Train walks through each training data item and increments the
appropriate cell in the jointCounts data structure:

for (int i = 0; i < numRows; ++i)
{
 string yString = trainData[i][numCols - 1]; // dependent value
 int depIndex = stringToInt[numCols - 1][yString]; // corresponding index
 for (int j = 0; j < numCols - 1; ++j)
 {

108

 int attIndex = j; // aka feature, index
 string xString = trainData[i][j]; // like "male"
 int valIndex = stringToInt[j][xString]; // corresponding index
 ++jointCounts[attIndex][valIndex][depIndex];
 }
}

Next, method Train allocates the data structure that stores the number of data items with each
of the possible dependent values, and initializes the count in each cell to the number of features
to use Laplacian smoothing:

this.dependentCounts = new int[2]; // binary
for (int i = 0; i < dependentCounts.Length; ++i) // Laplacian
 dependentCounts[i] = numCols - 1; // number features

The hard-coded 2 makes this strictly a binary classifier, so you may want to modify the code to
handle multiclass problems. As before, you can use the Count property of the Dictionary object
for the column to determine the number of distinct dependent variable values. Here, the number
of features is the number of columns of the training data matrix, less 1, to account for the
dependent variable in the last column.

Method Train concludes by walking through the training data matrix, and counts and stores the
number of each dependent variable value, conservative and liberal, in the demo:

. . .
 for (int i = 0; i < trainData.Length; ++i)
 {
 string yString = trainData[i][numCols - 1]; // 'conservative' or 'liberal'
 int yIndex = stringToInt[numCols - 1][yString]; // 0 or 1
 ++dependentCounts[yIndex];
 }
 return;
}

Here, I use an explicit return keyword for no reason other than to note that it is possible. In a

production environment, it's fairly important to follow a standard set of style guidelines that
presumably addresses things like using an explicit return with a void method.

Method Probability

Class method Probability returns the Bayesian probability of a specified dependent class value
given a set of feature values. In essence, method Probability is the prediction method. For
example, for the demo data, to compute the probability that a person has a political inclination of
liberal, given that they have a job of doctor, sex of male, and income of high, you could call:

string[] featureVals = new string[] { "doctor", "male", "high" };
double pLib = bc.Probability("liberal", featureVals); // prob person is liberal

For binary classification, if this probability is greater than 0.5, you would conclude the person
has a liberal political inclination. If the probability is less than 0.5, you'd conclude the person is a
conservative.

109

Figure 4-c: Computing a Bayesian Probability

The Probability method uses a matrix, conditionals, and two arrays, unconditionals and

partials, to store the values needed to compute the partials for each dependent variable

value, and then uses the two partials to compute the requested probability. Those data
structures are illustrated in Figure 4-c.

The method's definition begins:

public double Probability(string yValue, string[] xValues)
{
 int numFeatures = xValues.Length;
 double[][] conditionals = new double[2][]; // binary
 for (int i = 0; i < 2; ++i)
 conditionals[i] = new double[numFeatures];
. . .

If you refer to the section that explains how naive Bayes works, you'll recall that to compute a
probability, you need two so-called partials, one for each dependent variable value. A partial is
the product of conditional probabilities and one unconditional probability. For example, to
compute the probability of liberal given barista and female, and medium, one partial is the
product of P(barista | liberal), P(female | liberal), P(medium | liberal), and P(liberal).

In the demo, for just one partial, you need three conditional probabilities, one for each
combination of the specified feature values and the dependent value. But to compute any
probability for a binary classification problem, you need both partials corresponding to the two
possible dependent variable values. Therefore, if there are two dependent variable values, and
three features, you need 2 * 3 = 6 conditional probabilities to compute both partials.

110

The conditional probabilities are stored in the local matrix conditionals. The row index is the

index of the dependent variable, and the column index is the index of the feature value. For
example, conditionals[0][2] corresponds to dependent variable 0 (conservative) and

feature 2 (income). Put another way, for the demo, the first row of conditionals holds the

three conditional probabilities for conservative, and the second row holds the three conditional
probabilities for liberal.

Next, array unconditionals, which holds the unconditional probabilities of each dependent

variable value, is allocated, and the independent x-values and dependent y-value are converted
from strings to integers:

double[] unconditionals = new double[2];
int y = this.stringToInt[numFeatures][yValue];
int[] x = new int[numFeatures];
for (int i = 0; i < numFeatures; ++i)
{
 string s = xValues[i];
 x[i] = this.stringToInt[i][s];
}

Because a variable representing the number of features is used so often in the code, a design
alternative is to create a class member named something like numFeatures, rather than

recreate it as a local variable for each method.

Next, the conditional probabilities are computed and stored using count information that was
computed by the Train method:

for (int k = 0; k < 2; ++k) // each y-value
{
 for (int i = 0; i < numFeatures; ++i)
 {
 int attIndex = i;
 int valIndex = x[i];
 int depIndex = k;
 conditionals[k][i] = (jointCounts[attIndex][valIndex][depIndex] * 1.0) /
 dependentCounts[depIndex];
 }
}

Although the code here is quite short, it is some of the trickiest code I've ever worked with when
implementing machine learning algorithms. For me at least, sketching out diagrams like those in
Figures 4-b and 4-c is absolutely essential in order to write the code in the first place, and
correct bugs later.

Next, method Probability computes the probabilities of each dependent value and stores those
values:

int totalDependent = 0; // ex: count(conservative) + count(liberal)
for (int k = 0; k < 2; ++k)
 totalDependent += this.dependentCounts[k];

for (int k = 0; k < 2; ++k)
 unconditionals[k] = (dependentCounts[k] * 1.0) / totalDependent;

111

Notice that I qualify the first reference to member array dependentCounts using the this

keyword, but I don't use this on the second reference. From a style perspective, I sometimes

use this technique just to remind myself that an array, variable, or object is a class member.

Next, the partials are computed and stored:

double[] partials = new double[2];
for (int k = 0; k < 2; ++k)
{
 partials[k] = 1.0; // because we are multiplying
 for (int i = 0; i < numFeatures; ++i)
 partials[k] *= conditionals[k][i];
 partials[k] *= unconditionals[k];
}

Next, the sum of the two (for binary classification) partials is computed and stored, and the
requested probability is computed and returned:

. . .
 double evidence = 0.0;
 for (int k = 0; k < 2; ++k)
 evidence += partials[k];

 return partials[y] / evidence;
}

Recall that the sum of partials is sometimes called the evidence term in naive Bayes
terminology. Let me reiterate that the code for method probability is very tricky. The key to
understanding this code, and many other machine learning algorithms, is having a clear picture
(literally) of the data structures, arrays, and matrices used.

Method Accuracy

Method Accuracy computes how well the trained model predicts the dependent variable for a
set of training data, or test data, which has known dependent variable values. The accuracy of
the model on the training data gives you a rough idea of whether the model is effective or not.
The accuracy of the model on the test data gives you a rough estimate of how well the model
will predict when presented with new data, where the dependent variable value is not known.

The definition of method Accuracy begins:

public double Accuracy(string[][] data)
{
 int numCorrect = 0;
 int numWrong = 0;

 int numRows = data.Length;
 int numCols = data[0].Length;
. . .

112

Next, the method iterates through each data item and extracts the x-values—for example,
"barista", "female", and "medium"—and extracts the known y-value—for example,
"conservative". The x-values and the y-value are fed to the Probability method. If the computed
probability is greater than 0.5, the model has made a correct classification:

. . .

 for (int i = 0; i < numRows; ++i) // row
 {
 string yValue = data[i][numCols - 1]; // assumes y in last column
 string[] xValues = new string[numCols - 1];
 Array.Copy(data[i], xValues, numCols - 1);
 double p = this.Probability(yValue, xValues);
 if (p > 0.50)
 ++numCorrect;
 else
 ++numWrong;
 }
 return (numCorrect * 1.0) / (numCorrect + numWrong);
}

A common design alternative is to use a different threshold value instead of the 0.5 used here.
For example, suppose that for some data item, method Probability returns 0.5001. The
classification is just barely correct in some sense. So you might want to count probabilities
greater than 0.60 as correct, probabilities of less than 0.40 as wrong, and probabilities between
0.40 and 0.60 as inconclusive.

Converting Numeric Data to Categorical Data

Naive Bayes classification works with categorical data such as low, medium, and high for
annual income, rather than numeric values such as $36,000.00. If a data set contains some
numeric data and you want to apply naive Bayes classification, one approach is to convert the
numeric values to categorical values. This process is called data discretization, or more
informally, binning the data.

There are three main ways to bin data. The simplest, called equal width, is to create intervals, or
“buckets,” of the same size. The second approach, used with equal frequency, is to create
buckets so that each bucket has an (approximately) equal number of data values in it. The third
approach is to create buckets using a clustering algorithm such as k-means, so that data values
are grouped by similarity to each other.

Each of the three techniques has significant pros and cons, so there is no one clear best way to
bin data. That said, equal-width binning is usually the default technique.

There are many different ways to implement equal-width binning. Suppose you want to convert
the following 10 numeric values to either "small", "medium", "large", or "extra-large" (four
buckets) using equal-width binning:

2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 9.0, 10.0, 12.0, 14.0

Here, the data is sorted, but equal-width binning does not require this. First, the minimum and
maximum values are determined:

113

min = 2.0
max = 14.0

Next, the width of each bucket is computed:

width = (max - min) / number-buckets
 = (14.0 - 2.0) / 4
 = 3.0

Next, a preliminary set of intervals that define each bucket are constructed:

[2.0, 5.0) [5.0, 8.0) [8.0, 11.0) [11.0, 14.0) -> interval data
 [0] [1] [2] [3] [4] [5] [6] [7] -> cell index
 {0} {1} {2} {3} -> bucket

Here, the notation [2.0, 5.0) means greater than or equal to 2.0, and also less than 5.0. Next,
the two interval end points are modified to capture any outliers that may appear later:

[-inf, 5.0) [5.0, 8.0) [8.0, 11.0) [11.0, +inf) -> interval data
 [0] [1] [2] [3] [4] [5] [6] [7] -> cell index
 {0} {1} {2} {3} -> bucket

Here, -inf and +inf stand for negative infinity and positive infinity. Now the interval data can be
used to determine the categorical equivalent of a numeric value. Value 8.0 belongs to bucket 2,
so 8.0 maps to "large". If some new data arrives later, it can be binned too. For example, if
some new value x = 12.5 appears, it belongs to bucket 3 and would map to "extra-large".

One possible implementation of equal-width binning can take the form of two methods: the first
to create the interval data, and a second to assign a bucket or category to a data item. For
example, a method to create interval data could begin as:

static double[] MakeIntervals(double[] data, int numBins) // bin numeric data
{
 double max = data[0]; // find min & max
 double min = data[0];
 for (int i = 0; i < data.Length; ++i)
 {
 if (data[i] < min) min = data[i];
 if (data[i] > max) max = data[i];
 }
 double width = (max - min) / numBins;
. . .

Static method MakeIntervals accepts an array of data to bin, and the number of buckets to
create, and returns the interval data in an array. The minimum and maximum values are
determined, and the bucket width is computed as described earlier.

Next, the preliminary intervals are created:

double[] intervals = new double[numBins * 2];
intervals[0] = min;
intervals[1] = min + width;
for (int i = 2; i < intervals.Length - 1; i += 2)

114

{
 intervals[i] = intervals[i - 1];
 intervals[i + 1] = intervals[i] + width;
}

Notice that when using the scheme described here, all the interval boundary values, except the
first and last, are duplicated. It would be possible to store each boundary value just once.
Duplicating boundary values may be mildly inefficient, but leads to code that is much easier to
understand and modify.

And now, the first and last boundary values are modified so that the final interval data will be
able to handle any possible input value:

. . .
 intervals[0] = double.MinValue; // outliers
 intervals[intervals.Length - 1] = double.MaxValue;

 return intervals;
}

With this binning design, a partner method to perform the binning can be defined:

static int Bin(double x, double[] intervals)
{
 for (int i = 0; i < intervals.Length - 1; i += 2)
 {
 if (x >= intervals[i] && x < intervals[i + 1])
 return i / 2;
 }
 return -1; // error
}

Static method Bin does a simple linear search until it finds the correct interval. A design
alternative is to do a binary search. Calling the binning methods could resemble:

double[] data = new double[] { 2.0, 3.0, . . , 14.0 };
double[] intervals = MakeIntervals(data, 4); // 4 bins
int bin = Bin(x, 9.5); // bucket for value 9.5

Comments

When presented with a machine learning classification problem, naive Bayes classification is
often used first to establish baseline results. The idea is that the assumption of independence of
predictor variables is almost certainly not true, so other, more sophisticated classification
techniques should create models that are at least as good as a naive Bayes model.

One important area in which naive Bayes classifiers are often used is text and document
classification. For example, suppose you want to classify email messages from customers into
low, medium, or high priority. The predictor variables would be each possible word in the
messages. Naive Bayes classification is surprisingly effective for this type of problem.

115

Chapter 4 Complete Demo Program Source Code

using System;
using System.Collections.Generic;
namespace NaiveBayes
{
 class BayesProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("\nBegin Naive Bayes classification demo");
 Console.WriteLine("Goal is to predict (liberal/conservative) from job, " +
 "sex and income\n");

 string[][] rawData = new string[30][];
 rawData[0] = new string[] { "analyst", "male", "high", "conservative" };
 rawData[1] = new string[] { "barista", "female", "low", "liberal" };
 rawData[2] = new string[] { "cook", "male", "medium", "conservative" };
 rawData[3] = new string[] { "doctor", "female", "medium", "conservative" };
 rawData[4] = new string[] { "analyst", "female", "low", "liberal" };
 rawData[5] = new string[] { "doctor", "male", "medium", "conservative" };
 rawData[6] = new string[] { "analyst", "male", "medium", "conservative" };
 rawData[7] = new string[] { "cook", "female", "low", "liberal" };
 rawData[8] = new string[] { "doctor", "female", "medium", "liberal" };
 rawData[9] = new string[] { "cook", "female", "low", "liberal" };
 rawData[10] = new string[] { "doctor", "male", "medium", "conservative" };
 rawData[11] = new string[] { "cook", "female", "high", "liberal" };
 rawData[12] = new string[] { "barista", "female", "medium", "liberal" };
 rawData[13] = new string[] { "analyst", "male", "low", "liberal" };
 rawData[14] = new string[] { "doctor", "female", "high", "conservative" };

 rawData[15] = new string[] { "barista", "female", "medium", "conservative" };
 rawData[16] = new string[] { "doctor", "male", "medium", "conservative" };
 rawData[17] = new string[] { "barista", "male", "high", "conservative" };
 rawData[18] = new string[] { "doctor", "female", "medium", "liberal" };
 rawData[19] = new string[] { "analyst", "male", "low", "liberal" };
 rawData[20] = new string[] { "doctor", "male", "medium", "conservative" };
 rawData[21] = new string[] { "cook", "male", "medium", "conservative" };
 rawData[22] = new string[] { "doctor", "female", "high", "conservative" };
 rawData[23] = new string[] { "analyst", "male", "high", "conservative" };
 rawData[24] = new string[] { "barista", "female", "medium", "liberal" };
 rawData[25] = new string[] { "doctor", "male", "medium", "conservative" };
 rawData[26] = new string[] { "analyst", "female", "medium", "conservative" };
 rawData[27] = new string[] { "analyst", "male", "medium", "conservative" };
 rawData[28] = new string[] { "doctor", "female", "medium", "liberal" };
 rawData[29] = new string[] { "barista", "male", "medium", "conservative" };

 Console.WriteLine("The raw data is: \n");
 ShowData(rawData, 5, true);

 Console.WriteLine("Splitting data into 80%-20% train and test sets");
 string[][] trainData;
 string[][] testData;
 MakeTrainTest(rawData, 15, out trainData, out testData); // seed = 15 is nice
 Console.WriteLine("Done \n");

 Console.WriteLine("Training data: \n");
 ShowData(trainData, 5, true);

116

 Console.WriteLine("Test data: \n");
 ShowData(testData, 5, true);

 Console.WriteLine("Creating Naive Bayes classifier object");
 Console.WriteLine("Training classifier using training data");
 BayesClassifier bc = new BayesClassifier();
 bc.Train(trainData); // compute key count data structures
 Console.WriteLine("Done \n");

 double trainAccuracy = bc.Accuracy(trainData);
 Console.WriteLine("Accuracy of model on train data = " +
 trainAccuracy.ToString("F4"));
 double testAccuracy = bc.Accuracy(testData);
 Console.WriteLine("Accuracy of model on test data = " +
 testAccuracy.ToString("F4"));

 Console.WriteLine("\nPredicting politics for job = barista, sex = female, "
 + "income = medium \n");
 string[] features = new string[] { "barista", "female", "medium" };

 string liberal = "liberal";
 double pLiberal = bc.Probability(liberal, features);
 Console.WriteLine("Probability of liberal = " +
 pLiberal.ToString("F4"));

 string conservative = "conservative";
 double pConservative = bc.Probability(conservative, features);
 Console.WriteLine("Probability of conservative = " +
 pConservative.ToString("F4"));

 Console.WriteLine("\nEnd Naive Bayes classification demo\n");
 Console.ReadLine();
 } // Main

 static void MakeTrainTest(string[][] allData, int seed,
 out string[][] trainData, out string[][] testData)
 {
 Random rnd = new Random(seed);
 int totRows = allData.Length;
 int numTrainRows = (int)(totRows * 0.80);
 int numTestRows = totRows - numTrainRows;
 trainData = new string[numTrainRows][];
 testData = new string[numTestRows][];

 string[][] copy = new string[allData.Length][]; // ref copy of all data
 for (int i = 0; i < copy.Length; ++i)
 copy[i] = allData[i];

 for (int i = 0; i < copy.Length; ++i) // scramble order
 {
 int r = rnd.Next(i, copy.Length);
 string[] tmp = copy[r];
 copy[r] = copy[i];
 copy[i] = tmp;
 }
 for (int i = 0; i < numTrainRows; ++i)
 trainData[i] = copy[i];

117

 for (int i = 0; i < numTestRows; ++i)
 testData[i] = copy[i + numTrainRows];
 } // MakeTrainTest

 static void ShowData(string[][] rawData, int numRows, bool indices)
 {
 for (int i = 0; i < numRows; ++i)
 {
 if (indices == true)
 Console.Write("[" + i.ToString().PadLeft(2) + "] ");
 for (int j = 0; j < rawData[i].Length; ++j)
 {
 string s = rawData[i][j];
 Console.Write(s.PadLeft(14) + " ");
 }
 Console.WriteLine("");
 }
 if (numRows != rawData.Length-1)
 Console.WriteLine(". . .");
 int lastRow = rawData.Length - 1;
 if (indices == true)
 Console.Write("[" + lastRow.ToString().PadLeft(2) + "] ");
 for (int j = 0; j < rawData[lastRow].Length; ++j)
 {
 string s = rawData[lastRow][j];
 Console.Write(s.PadLeft(14) + " ");
 }
 Console.WriteLine("\n");
 }

 static double[] MakeIntervals(double[] data, int numBins) // bin numeric data
 {
 double max = data[0]; // find min & max
 double min = data[0];
 for (int i = 0; i < data.Length; ++i)
 {
 if (data[i] < min) min = data[i];
 if (data[i] > max) max = data[i];
 }
 double width = (max - min) / numBins; // compute width

 double[] intervals = new double[numBins * 2]; // intervals
 intervals[0] = min;
 intervals[1] = min + width;
 for (int i = 2; i < intervals.Length - 1; i += 2)
 {
 intervals[i] = intervals[i - 1];
 intervals[i + 1] = intervals[i] + width;
 }
 intervals[0] = double.MinValue; // outliers
 intervals[intervals.Length - 1] = double.MaxValue;

 return intervals;
 }

 static int Bin(double x, double[] intervals)
 {
 for (int i = 0; i < intervals.Length - 1; i += 2)
 {

118

 if (x >= intervals[i] && x < intervals[i + 1])
 return i / 2;
 }
 return -1; // error
 }

 } // Program

 public class BayesClassifier
 {
 private Dictionary<string, int>[] stringToInt; // "male" -> 0, etc.
 private int[][][] jointCounts; // [feature][value][dependent]
 private int[] dependentCounts;

 public BayesClassifier()
 {
 this.stringToInt = null; // need training data to know size
 this.jointCounts = null; // need training data to know size
 this.dependentCounts = null; // need training data to know size
 }

 public void Train(string[][] trainData)
 {
 // 1. scan training data and construct one dictionary per column
 int numRows = trainData.Length;
 int numCols = trainData[0].Length;
 this.stringToInt = new Dictionary<string, int>[numCols]; // allocate array

 for (int col = 0; col < numCols; ++col) // including y-values
 {
 stringToInt[col] = new Dictionary<string, int>(); // instantiate Dictionary

 int idx = 0;
 for (int row = 0; row < numRows; ++row) // each row of curr column
 {
 string s = trainData[row][col];
 if (stringToInt[col].ContainsKey(s) == false) // first time seen
 {
 stringToInt[col].Add(s, idx); // ex: analyst -> 0
 ++idx;
 }
 } // each row
 } // each col

 // 2. scan and count using stringToInt Dictionary
 this.jointCounts = new int[numCols - 1][][]; // do not include the y-value

 // a. allocate second dim
 for (int c = 0; c < numCols - 1; ++c) // each feature column but not y-column
 {
 int count = this.stringToInt[c].Count; // number possible values for column
 jointCounts[c] = new int[count][];
 }

 // b. allocate last dimension = always 2 for binary classification
 for (int i = 0; i < jointCounts.Length; ++i)
 for (int j = 0; j < jointCounts[i].Length; ++j)
 {
 //int numDependent = stringToInt[stringToInt.Length - 1].Count;

119

 //jointCounts[i][j] = new int[numDependent];
 jointCounts[i][j] = new int[2]; // binary classification
 }

 // c. init joint counts with 1 for Laplacian smoothing
 for (int i = 0; i < jointCounts.Length; ++i)
 for (int j = 0; j < jointCounts[i].Length; ++j)
 for (int k = 0; k < jointCounts[i][j].Length; ++k)
 jointCounts[i][j][k] = 1;

 // d. compute joint counts
 for (int i = 0; i < numRows; ++i)
 {
 string yString = trainData[i][numCols - 1]; // dependent value
 int depIndex = stringToInt[numCols - 1][yString]; // corresponding index
 for (int j = 0; j < numCols - 1; ++j)
 {
 int attIndex = j;
 string xString = trainData[i][j]; // an attribute value like "male"
 int valIndex = stringToInt[j][xString]; // corresponding integer like 0
 ++jointCounts[attIndex][valIndex][depIndex];
 }
 }

 // 3. scan and count number of each of the 2 dependent values
 this.dependentCounts = new int[2]; // binary

 for (int i = 0; i < dependentCounts.Length; ++i) // Laplacian init
 dependentCounts[i] = numCols - 1; // numCols - 1 = num features

 for (int i = 0; i < trainData.Length; ++i)
 {
 string yString = trainData[i][numCols - 1]; // conservative or liberal
 int yIndex = stringToInt[numCols - 1][yString]; // 0 or 1
 ++dependentCounts[yIndex];
 }

 return; // the trained 'model' is jointCounts and dependentCounts
 } // Train

 public double Probability(string yValue, string[] xValues)
 {
 int numFeatures = xValues.Length; // ex: 3 (job, sex, income)

 double[][] conditionals = new double[2][]; // binary
 for (int i = 0; i < 2; ++i)
 conditionals[i] = new double[numFeatures]; // ex: P('doctor' | conservative)

 double[] unconditionals = new double[2]; // ex: P('conservative'), P('liberal')

 // convert strings to ints
 int y = this.stringToInt[numFeatures][yValue];
 int[] x = new int[numFeatures];
 for (int i = 0; i < numFeatures; ++i)
 {
 string s = xValues[i];
 x[i] = this.stringToInt[i][s];
 }

120

 // compute conditionals
 for (int k = 0; k < 2; ++k) // each y-value
 {
 for (int i = 0; i < numFeatures; ++i)
 {
 int attIndex = i;
 int valIndex = x[i];
 int depIndex = k;
 conditionals[k][i] =
 (jointCounts[attIndex][valIndex][depIndex] * 1.0) /
 dependentCounts[depIndex];
 }
 }

 // compute unconditionals
 int totalDependent = 0; // ex: count(conservative) + count(liberal)
 for (int k = 0; k < 2; ++k)
 totalDependent += this.dependentCounts[k];

 for (int k = 0; k < 2; ++k)
 unconditionals[k] = (dependentCounts[k] * 1.0) / totalDependent;

 // compute partials
 double[] partials = new double[2];
 for (int k = 0; k < 2; ++k)
 {
 partials[k] = 1.0; // because we are multiplying
 for (int i = 0; i < numFeatures; ++i)
 partials[k] *= conditionals[k][i];
 partials[k] *= unconditionals[k];
 }

 // evidence = sum of partials
 double evidence = 0.0;
 for (int k = 0; k < 2; ++k)
 evidence += partials[k];

 return partials[y] / evidence;
 } // Probability

 public double Accuracy(string[][] data)
 {
 int numCorrect = 0;
 int numWrong = 0;

 int numRows = data.Length;
 int numCols = data[0].Length;

 for (int i = 0; i < numRows; ++i) // row
 {
 string yValue = data[i][numCols - 1]; // assumes y in last column
 string[] xValues = new string[numCols - 1];
 Array.Copy(data[i], xValues, numCols - 1);
 double p = this.Probability(yValue, xValues);
 if (p > 0.50)
 ++numCorrect;
 else

121

 ++numWrong;
 }
 return (numCorrect * 1.0) / (numCorrect + numWrong);
 }
 } // class BayesClassifier

} // ns

122

Chapter 5 Neural Network Classification

Introduction

Neural networks are software systems that loosely model biological neurons and synapses.
Neural network classification is one of the most interesting and sophisticated topics in all of
machine learning. One way to think of a neural network is as a complex mathematical function
that accepts one or more numeric inputs and generates one or more numeric outputs.

Figure 5-a: Neural Network Classification Demo

123

A good way to get an understanding of what neural networks are is to examine the screenshot
of a demo program in Figure 5-a. The goal of the demo is to create a model that can predict the
species of an iris flower based on the flower's color, petal length, and petal width.

The source data set has 30 items. The first three data items are:

blue, 1.4, 0.3, setosa
pink, 4.9, 1.5, versicolor
teal, 5.6, 1.8, virginica

The predictor variables (also called independent variables, features, and x-data) are in the first
three columns. The first column holds the iris flower's color, which can be blue, pink, or teal. The
second and third columns are the flower's petal length and width. The fourth column holds the
dependent variable, species, which can be setosa, versicolor, or virginica.

Note: the demo data is an artificial data set patterned after a famous, real data set called
Fisher's Iris data. Fisher's real data set has 150 items and uses sepal length and sepal width
instead of color. (A sepal is a green, leaf-like structure).

Because neural networks work internally with numeric data, the categorical color values and
species must be encoded as numeric values. The demo assumes this has been done
externally. The first three lines of encoded data are:

[0] 1.0 0.0 1.4 0.3 1.0 0.0 0.0
[1] 0.0 1.0 4.9 1.5 0.0 1.0 0.0
[2] -1.0 -1.0 5.6 1.8 0.0 0.0 1.0

The species values are encoded using what is called 1-of-N dummy encoding. Categorical data
value setosa maps to numeric values (1, 0, 0), versicolor maps to (0, 1, 0), and virginica maps
to (0, 0, 1). There are several other, less common, encoding schemes for categorical dependent
variables.

The independent variable color values are encoded using 1-of-(N-1) effects encoding. Color
blue maps to (1, 0), pink maps to (0, 1), and teal maps to (-1, -1). Although there are
alternatives, in my opinion the somewhat unusual looking 1-of-(N-1) effects encoding is usually
the best approach to use for categorical predictor variables.

Using the 30-item source data, the demo program sets up a 24-item training set, used to create
the neural network model, and a 6-item test set, used to estimate the accuracy of the model
when presented with new, previously unseen data.

The demo program creates a four-input-node, six-hidden-node, three-output-node neural
network. The number of input and output nodes, four and three, are determined by the structure
of the encoded data. The number of hidden nodes for a neural network is a free parameter and
must be determined by trial and error.

There are dozens of variations of neural networks. The demo program uses the most basic
form, which is a fully-connected, feed-forward architecture, with a hyperbolic tangent (often
abbreviated tanh) hidden layer activation function and a softmax output layer activation function.
Activation functions will be explained shortly.

124

Behind the scenes, a 4-6-3 neural network has a total of (4)(6) + 6 + (6)(3) + 3 = 51 numeric
values, called weights and biases. These weights determine the output values for a given set of
input values. Training a neural network is the process of finding the best set of values for the
weights and biases, so that when presented with the training data, the computed outputs closely
match the known outputs. Then, when presented with new data, the neural network uses the
best weights found to make predictions.

There are several techniques that can be used to train a neural network. By far, the most
common technique is called back-propagation. In fact, back-propagation training is so common
that people new to neural networks sometimes assume it is the only training technique. The
demo program uses an alternative technique called particle swarm optimization (PSO).

Basic PSO training requires just two parameter values. The demo program uses 12 particles,
and sets a maximum training loop count of 500. These parameters will be explained shortly.

After the neural network is trained using PSO, the demo program displays the values of the 51
weights and biases that define the model. The demo computes the accuracy of the final model
on the training data, which is 91.67% (22 out of 24 correct), and the accuracy on the test data
(83.33%, five out of six correct). The 83.33% figure can be interpreted as a rough estimate of
how well the final neural network model would predict the species of new, previously unseen iris
flowers.

Understanding Neural Network Classification

The process by which a neural network computes output values is called the feed-forward
mechanism. Output values are determined by the input values, the hidden weights and bias
values, and two activation functions. The process is best explained with a concrete example.
See the diagram in Figure 5-b.

The diagram shows a fully connected 3-4-2 dummy neural network, which does not correspond
to the demo problem. Although the neural network appears to have three layers of nodes, the
first layer, the input layer, is normally not counted, so the neural network in the diagram is
usually called a two-layer network.

Each arrow connecting one node to another represents a weight value. Each hidden and output
node also has an arrow that represents a special weight called a bias. The neural network's
three input values are { 1.0, 5.0, 9.0 }, and the two output values are { 0.4886, 0.5114 }.

The feed-forward process begins by computing the values for the hidden nodes. Each hidden
node value is an activation function applied to the sum of the products of input node values and
their associated weight values, plus the node's bias value. For example, the top-most hidden
node's value is computed as:

hidden[0] sum = (1.0)(0.01) + (5.0)(0.05) + (9.0)(0.09) + 0.13
 = 0.01 + 0.25 + 0.81 + 0.13
 = 1.20

hidden[0] value = tanh(1.20)
 = 0.8337 (rounded)

125

The dummy neural network is using tanh, the hyperbolic tangent function. The tanh function
accepts any real value and returns a result that is between -1.0 and +1.0. The main alternative
to the tanh function for hidden layer activation is the logistic sigmoid function.

Figure 5-b: The Neural Network Feed-Forward Mechanism

Next, each output node is computed in a similar way. Preliminary output values for all nodes are
computed, and then the preliminary values are combined, so that all output node values sum to
1.0. In Figure 5-b, the two output node preliminary output values are:

output[0] prelim = (.8337)(.17) + (.8764)(.19) + (.9087)(.21) + (.9329)(.23) + .25
 = 0.9636

output[1] prelim = (.8337)(.18) + (.8764)(.20) + (.9087)(.22) + (.9329)(.24) + .26
 = 1.0091

These two preliminary output values are combined using an activation function called the
softmax function to give the final output values like so:

output[0] = e0.9636 / (e0.9636 + e1.0091)

 = 2.6211 / (2.6211 + 2.7431)
 = 0.4886

output[1] = e1.0091 / (e0.9636 + e1.0091)

 = 2.7431 / (2.6211 + 2.7431)
 = 0.5114
The point of using the softmax activation function is to coerce output values to sum to 1.0 so
that they can be interpreted as the probabilities of the y-values.

126

For the dummy neural network in Figure 5-b, there are two output nodes, so suppose those
nodes correspond to predicting male or female, where male is dummy-encoded as (1, 0) and
female is encoded as (0, 1). If the output values (0.4886, 0.5114) are interpreted as
probabilities, the higher probability is in the second position, and so the output values predict (0,
1), which is female.

Binary neural network classification, where there are two output values, is a special case that can,
and usually is, treated differently from problems with three or more output values. With just two
possible y-values, instead of using softmax activation with two output nodes and dummy encoding,
you can use the logistic sigmoid function with just a single output node and 0-1 encoding.

The logistic sigmoid function is defined as f(z) = 1.0 / (1.0 + e-z). It accepts any real-valued input

and returns a value between 0.0 and 1.0. So if two categorical y-values are male and female,
you would encode male as 0 and female as 1. You would create a neural network with just one
output node. When computing the value of the single output node, you'd use the logistic sigmoid
function for activation. The result will be between 0.0 and 1.0, for example, 0.6775. In this case,
the computed output, 0.6775, is closer to 1 (female) than to 0 (male) so you'd conclude the
output is female.

Another very common design alternative applies to any type of neural network classifier. Instead
of using separate, distinct bias values for each hidden and output node, you can consider the
bias values as special weights that have a hidden, dummy, constant associated input value of
1.0. In my opinion, treating bias values as special weights with invisible 1.0 inputs is
conceptually unappealing, and more error-prone than just treating bias values as bias values.

Demo Program Overall Structure

To create the demo, I launched Visual Studio and selected the new C# console application
template. After the template code loaded into the editor, I removed all using statements at the

top of the source code, except for the single reference to the top-level System namespace. In
the Solution Explorer window, I renamed file Program.cs to the more descriptive
NeuralProgram.cs, and Visual Studio automatically renamed class Program to NeuralProgram.

The overall structure of the demo program, with a few minor edits to save space, is presented in
Listing 5-a. In order to keep the size of the example code small, and the main ideas as clear as
possible, the demo program omits normal error checking.

using System;
namespace NeuralClassification
{
 class NeuralProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Begin neural network demo");
 Console.WriteLine("Goal is to predict species of Iris flower");
 Console.WriteLine("Raw data looks like: ");
 Console.WriteLine("blue, 1.4, 0.3, setosa");
 Console.WriteLine("pink, 4.9, 1.5, versicolor");
 Console.WriteLine("teal, 5.6, 1.8, virginica \n");

127

 double[][] trainData = new double[24][];
 trainData[0] = new double[] { 1, 0, 1.4, 0.3, 1, 0, 0 };
 trainData[1] = new double[] { 0, 1, 4.9, 1.5, 0, 1, 0 };
 // etc.
 trainData[23] = new double[] { -1, -1, 5.8, 1.8, 0, 0, 1 };

 double[][] testData = new double[6][];
 testData[0] = new double[] { 1, 0, 1.5, 0.2, 1, 0, 0 };
 testData[1] = new double[] { -1, -1, 5.9, 2.1, 0, 0, 1 };
 // etc.
 testData[5] = new double[] { 1, 0, 6.3, 1.8, 0, 0, 1 };

 Console.WriteLine("Encoded training data is: ");
 ShowData(trainData, 5, 1, true);

 Console.WriteLine("Encoded test data is: ");
 ShowData(testData, 2, 1, true);

 Console.WriteLine("Creating a 4-input, 6-hidden, 3-output neural network");
 Console.WriteLine("Using tanh and softmax activations");
 const int numInput = 4;
 const int numHidden = 6;
 const int numOutput = 3;
 NeuralNetwork nn = new NeuralNetwork(numInput, numHidden, numOutput);

 int numParticles = 12;
 int maxEpochs = 500;
 Console.WriteLine("Setting numParticles = " + numParticles);
 Console.WriteLine("Setting maxEpochs = " + maxEpochs);

 Console.WriteLine("Beginning training using Particle Swarm Optimization");
 double[] bestWeights = nn.Train(trainData, numParticles,
 maxEpochs, exitError, probDeath);
 Console.WriteLine("Final neural network weights and bias values: ");
 ShowVector(bestWeights, 10, 3, true);

 nn.SetWeights(bestWeights);
 double trainAcc = nn.Accuracy(trainData);
 Console.WriteLine("Accuracy on training data = " + trainAcc.ToString("F4"));

 double testAcc = nn.Accuracy(testData);
 Console.WriteLine("Accuracy on test data = " + testAcc.ToString("F4"));

 Console.WriteLine("End neural network demo\n");
 Console.ReadLine();
 } // Main

 static void ShowVector(double[] vector, int valsPerRow, int decimals,
 bool newLine) { . . }

 static void ShowData(double[][] data, int numRows, int decimals,
 bool indices) { . . }

 } // Program class

 public class NeuralNetwork { . . }
} // ns

Listing 5-a: Neural Network Classification Demo Program Structure

128

All the neural network classification logic is contained in a single program-defined class named
NeuralNetwork. All the program logic is contained in the Main method. The Main method begins
by setting up 24 hard-coded (color, length, width, species) data items in an array-of-arrays style
matrix:

static void Main(string[] args)
{
 Console.WriteLine("\nBegin neural network demo\n");
 Console.WriteLine("Raw data looks like: \n");
 Console.WriteLine("blue, 1.4, 0.3, setosa");
 Console.WriteLine("pink, 4.9, 1.5, versicolor");
 Console.WriteLine("teal, 5.6, 1.8, virginica \n");
 double[][] trainData = new double[24][];
 trainData[0] = new double[] { 1, 0, 1.4, 0.3, 1, 0, 0 };
 trainData[1] = new double[] { 0, 1, 4.9, 1.5, 0, 1, 0 };
 trainData[2] = new double[] { -1, -1, 5.6, 1.8, 0, 0, 1 };
. . .

The demo program assumes that the color values, blue, pink, and teal, have been converted
either manually or programmatically to 1-of-(N-1) encoded form, and that the three species
values have been converted to 1-of-N encoded form.

For simplicity, the demo does not normalize the numeric petal length and width values. This is
acceptable here only because their magnitudes, all between 0.2 and 7.0, are close enough to
the -1, 0, and +1 values of the 1-of-(N-1) encoded color values such that neither feature will
dominate the other. In most situations, you should normalize your data.

Next, the demo creates six hard-coded test data items:

double[][] testData = new double[6][];
testData[0] = new double[] { 1, 0, 1.5, 0.2, 1, 0, 0 };
testData[1] = new double[] { -1, -1, 5.9, 2.1, 0, 0, 1 };
testData[2] = new double[] { 0, 1, 1.4, 0.2, 1, 0, 0 };
testData[3] = new double[] { 0, 1, 4.7, 1.6, 0, 1, 0 };
testData[4] = new double[] { 1, 0, 4.6, 1.3, 0, 1, 0 };
testData[5] = new double[] { 1, 0, 6.3, 1.8, 0, 0, 1 };

In a non-demo scenario, the training and test data would be programmatically generated from
the source data set using a utility method named something like MakeTrainTest or SplitData.

After displaying a few lines of the training and test data using static helper method ShowData,
the demo program creates and instantiates a program-defined NeuralNetwork classifier object:

Console.WriteLine("\nCreating a 4-input, 6-hidden, 3-output neural network");
Console.WriteLine("Using tanh and softmax activations \n");
int numInput = 4;
int numHidden = 6;
int numOutput = 3;
NeuralNetwork nn = new NeuralNetwork(numInput, numHidden, numOutput);

129

There are four input nodes to accommodate two values for the 1-of-(N-1) encoded color, plus
the petal length and width. There are three output nodes to accommodate the 1-of-N encoded
three species values: setosa, versicolor, and virginica. Determining the number of hidden nodes
to use is basically a matter of trial and error.

Next, the neural network is trained:

int numParticles = 12;
int maxEpochs = 500;
Console.WriteLine("Setting numParticles = " + numParticles);
Console.WriteLine("Setting maxEpochs = " + maxEpochs);
Console.WriteLine("\nBeginning training using Particle Swarm Optimization");
double[] bestWeights = nn.Train(trainData, numParticles, maxEpochs);

Console.WriteLine("Training complete \n");
Console.WriteLine("Final neural network weights and bias values:");
ShowVector(bestWeights, 10, 3, true);

The demo program uses particle swarm optimization (PSO) for training. There are many
variations of PSO, but the demo uses the simplest form, which requires only the number of
virtual particles and the maximum number of iterations for the main optimization loop.

After training completes, the best weights found are stored in the NeuralNetwork object. For
convenience, the training method also explicitly returns the best weights found. The 51 weights
and bias values are displayed using helper method ShowVector. The demo program does not
save the weight values that define the model, so you might want to write a SaveWeights
method.

The demo program concludes by computing the classification accuracy of the final model:

. . .
 nn.SetWeights(bestWeights);
 double trainAcc = nn.Accuracy(trainData);
 Console.WriteLine("\nAccuracy on training data = " + trainAcc.ToString("F4"));

 double testAcc = nn.Accuracy(testData);
 Console.WriteLine("Accuracy on test data = " + testAcc.ToString("F4"));

 Console.WriteLine("\nEnd neural network demo\n");
 Console.ReadLine();
} // Main

Note that because the best weights found are stored in the NeuralNetwork object, the call to
method SetWeights is not really necessary.

The demo program does not use the model to make a prediction for a new data item that has an
unknown species. Prediction could look like:

double[] unknown = new double[] { 1, 0, 1.9, 0.5 }; // blue, petal = 1.9, 0.5
nn.SetWeights(bestWeights);
string species = nn.Predict(unknown);
Console.WriteLine("Predicted species is " + species);

130

Defining the NeuralNetwork Class

The structure of the program-defined NeuralNetwork class is presented in Listing 5-b. Data
member array inputs holds the x-values. Member matrix ihWeights holds the input-to-hidden

weights. For example, if ihWeights[0][2] is 0.234, then the weight connecting input node 0 to

hidden node 2 has value 0.234.

public class NeuralNetwork
{
 private int numInput; // number of input nodes
 private int numHidden; // number of hidden nodes
 private int numOutput; // number of output nodes

 private double[] inputs;
 private double[][] ihWeights; // input-hidden
 private double[] hBiases;
 private double[] hOutputs;

 private double[][] hoWeights; // hidden-output
 private double[] oBiases;
 private double[] outputs;

 private Random rnd;

 public NeuralNetwork(int numInput, int numHidden, int numOutput) { . . }
 private static double[][] MakeMatrix(int rows, int cols)

 public void SetWeights(double[] weights) { . . }

 public double[] ComputeOutputs(double[] xValues) { . . }
 private static double HyperTan(double x) { . . }
 private static double[] Softmax(double[] oSums) { . . }

 public double[] Train(double[][] trainData, int numParticles, int maxEpochs) { . . }
 private void Shuffle(int[] sequence) { . . }
 private double MeanSquaredError(double[][] trainData, double[] weights) { . . }

 public double Accuracy(double[][] testData) { . . }
 private static int MaxIndex(double[] vector) { . . }

 // --
 private class Particle { . . }
 // --
}

Listing 5-b: The NeuralNetwork Class

Member array hBiases holds the hidden node bias values. Member array hOutputs holds the

values of the hidden nodes after the hidden layer tanh function has been applied. After they're
computed, these values act as local inputs when computing the output layer nodes.

Member matrix hoWeights holds the hidden-to-output node weights. Member array oBiases

holds the bias values for the output nodes. Member array outputs holds the final output node

values. Member rnd is a Random object, which is used during the PSO training algorithm.

131

The NeuralNetwork class has a single constructor. Static helper method MakeMatrix is called by
the constructor, and is just a convenience to allocate the ihWeights and hoWeights matrices.

The constructor code is simple:

public NeuralNetwork(int numInput, int numHidden, int numOutput)
{
 this.numInput = numInput;
 this.numHidden = numHidden;
 this.numOutput = numOutput;
 this.inputs = new double[numInput];
 this.ihWeights = MakeMatrix(numInput, numHidden);
 this.hBiases = new double[numHidden];
 this.hOutputs = new double[numHidden];
 this.hoWeights = MakeMatrix(numHidden, numOutput);
 this.oBiases = new double[numOutput];
 this.outputs = new double[numOutput];
 this.rnd = new Random(0);
}

Random object rnd is instantiated with a seed value of 0 only because that value gave a

representative demo run. You might want to experiment with different seed values.

Method ComputeOutputs implements the feed-forward mechanism. The definition begins:

public double[] ComputeOutputs(double[] xValues)
{
 double[] hSums = new double[numHidden]; // hidden nodes sums scratch array
 double[] oSums = new double[numOutput]; // output nodes sums
. . .

Recall that hidden and output nodes are computed in two steps. First, a sum of products is
computed, and then an activation function is applied. Arrays hSums and oSums hold the sum of

products. A design alternative is to declare hSums and oSums as class-scope arrays to avoid

allocating them on every call to ComputeOutputs. However, if you do this, you'd have to
remember to explicitly zero out both arrays inside ComputeOutputs.

Next, ComputeOutputs transfers the x-data parameter values into the class inputs array:

for (int i = 0; i < xValues.Length; ++i) // copy x-values to inputs
 this.inputs[i] = xValues[i];

A very important design alternative is to delete the class inputs array from the NeuralNetwork

definition and use the x-data values directly. This saves the overhead of copying values into
inputs at the expense of clarity.

Next, the hidden node values are computed using the feed-forward mechanism:

for (int j = 0; j < numHidden; ++j) // sum of weights * inputs
 for (int i = 0; i < numInput; ++i)
 hSums[j] += this.inputs[i] * this.ihWeights[i][j]; // note +=

for (int i = 0; i < numHidden; ++i) // add biases
 hSums[i] += this.hBiases[i];

132

for (int i = 0; i < numHidden; ++i) // apply activation
 this.hOutputs[i] = HyperTan(hSums[i]);

Here, the hyperbolic tangent function is hard-coded into the class definition. A design alternative
is to pass the hidden layer activation function in as a parameter. This gives additional calling
flexibility at the expense of significantly increased design complexity.

Helper method HyperTan is defined:

private static double HyperTan(double x)
{
 if (x < -20.0)
 return -1.0; // approximation is correct to 30 decimals
 else if (x > 20.0)
 return 1.0;
 else return Math.Tanh(x);
}

Although you can just call built-in method Math.Tanh directly, the demo checks the input value x
first because for small or large values of x, the tanh function returns values that are extremely
close to 0.0 or 1.0, respectively.

After computing the hidden node values, method ComputeOutputs computes the output layer
node values:

for (int j = 0; j < numOutput; ++j) // sum of weights * hOutputs
 for (int i = 0; i < numHidden; ++i)
 oSums[j] += hOutputs[i] * hoWeights[i][j];

for (int i = 0; i < numOutput; ++i) // add biases to input-to-hidden sums
 oSums[i] += oBiases[i];

double[] softOut = Softmax(oSums); // all outputs at once for efficiency
Array.Copy(softOut, outputs, softOut.Length);

Calculating the softmax outputs is a bit subtle. If you refer to the explanation of how softmax
works, you'll notice that the calculation requires all the preliminary outputs, so unlike hidden
nodes which are activated one at a time, output nodes are activated as a group.

The definition of helper method Softmax is:

private static double[] Softmax(double[] oSums)
{
 // determine max output-sum
 double max = oSums[0];
 for (int i = 0; i < oSums.Length; ++i)
 if (oSums[i] > max) max = oSums[i];

 // determine scaling factor -- sum of exp(each val - max)
 double scale = 0.0;
 for (int i = 0; i < oSums.Length; ++i)
 scale += Math.Exp(oSums[i] - max);

133

 double[] result = new double[oSums.Length];
 for (int i = 0; i < oSums.Length; ++i)
 result[i] = Math.Exp(oSums[i] - max) / scale;

 return result; // now scaled so that xi sum to 1.0
}

Method Softmax is short, but quite tricky. Instead of computing softmax outputs using the direct
definition, method Softmax uses some clever math. The indirect implementation gives the same
result as the definition, but avoids potential arithmetic underflow or overflow problems, because
intermediate values in the direct-definition calculation can be extremely close 0.0.

Understanding Particle Swarm Optimization

The most common technique to train neural networks is called back-propagation. Back-
propagation is based on classical calculus techniques, and is conceptually complex, but
relatively simple to implement. The major disadvantage of back-propagation is that it requires
you to specify values for two parameters called the learning rate and the momentum. Back-
propagation is extraordinarily sensitive to these parameter values, meaning that even a tiny
change can have a dramatic impact.

Particle swarm optimization (PSO) also requires parameter values, but is much less sensitive
than back-propagation. The major disadvantage of using PSO for training is that it is usually
slower than using back-propagation.

PSO is loosely modeled on coordinated group behavior, such as the flocking of birds. PSO
maintains a collection of virtual particles where each particle represents a potential best solution
to a problem, which, in the case of neural networks, is a set of values for the weights and biases
that minimize the error between computed output values and known output values in a set of
training data.

Expressed in very high-level pseudo-code, PSO looks like:

initialize n particles to random solutions/positions and velocities
loop until done
 for each particle
 compute a new velocity based on best known positions
 use new velocity to move particle to new position/solution
 end for
end loop
return best solution/position found by any particle

PSO is illustrated in Figure 5-c. In a simple case where a solution consists of two values, like
(1.23, 4.56), you can think of a solution as a point on an (x, y) plane. The graph shows two
particles. In most situations, there would be many particles. The goal is to minimize the function
f(x, y) = 3x2 + 3y2. The solution is x = y = 0.0, so the problem doesn't really need PSO; the
example is intended just to illustrate how PSO works.

134

Figure 5-c: Example of Particle Swarm Optimization

The first particle, in the lower left, starts with a randomly generated initial solution of (-6.0, -5.0)
and random initial velocity (direction) values that move the particle up and to the left. The
second particle, in the upper right, has random initial value (9.5, 5.1) and random initial velocity
that will move the particle up and to the left.

The graph shows how each particle moves during the first nine iterations of the main PSO loop.
The new position of each particle is influenced by its current direction, the best position found by
the particle at any time, and the best position found by any of the particles at any time. The net
result is that particles tend to move in a coordinated way and converge on a good, hopefully
optimum, solution. In the graph, you can see that both particles quickly got very close to the
optimal solution of (0, 0).

In math terms, the PSO equations to update a particle's velocity and position are:

v(t+1) = (w * v(t)) + (c1 * r1 * (p(t) – x(t)) + (c2 * r2 * (g(t) – x(t))

x(t+1) = x(t) + v(t+1)

The position update process is actually much simpler than these equations appear. The first
equation updates a particle's velocity. The term v(t+1) means the velocity at time t+1. Notice
that v is bold, indicating that velocity is a vector value and has multiple components, such as
(1.55, -0.33), rather than being a single scalar value.

135

The new velocity depends on three terms. The first term is w * v(t). The w factor is called the
inertia weight and is just a constant like 0.73 (more on this shortly), and v(t) is the current
velocity at time t. The second term is c1 * r1 * (p(t) – x(t)). The c1 factor is a constant called the
cognitive (or personal) weight. The r1 factor is a random variable in the range [0, 1), which is
greater than or equal to 0 and strictly less than 1. The p(t) vector value is the particle's best
position found so far. The x(t) vector value is the particle's current position.

The third term in the velocity update equation is (c2 * r2 * (g(t) – x(t)). The c2 factor is a
constant called the social (or global) weight. The r2 factor is a random variable in the range [0,
1). The g(t) vector value is the best known position found by any particle in the swarm so far.
Once the new velocity, v(t+1), has been determined, it is used to compute the new particle
position x(t+1).

A concrete example will help make the update process clear. Suppose that you are trying to
minimize f(x, y) = 3x2 + 3y2. Suppose a particle's current position, x(t), is (x, y) = (3.0, 4.0), and
that the particle's current velocity, v(t), is (-1.0, -1.5). Additionally, assume that constant w = 0.7,
constant c1 = 1.4, constant c2 = 1.4, and that random numbers r1 and r2 are 0.5 and 0.6
respectively. Finally, suppose that the particle's current best known position is p(t) = (2.5, 3.6)
and that the current global best known position found by any particle in the swarm is g(t) = (2.3,
3.4). Then the new velocity values are:

v(t+1) = (0.7 * (-1.0,-1.5)) + (1.4 * 0.5 * (2.5, 3.6) - (3.0, 4.0)) + (1.4 * 0.6 * (2.3, 3.4) – (3.0, 4.0))
 = (-0.70, -1.05) + (-0.35, -0.28) + (-0.59, -0.50)
 = (-1.64, -1.83)

Now the new velocity is added to the current position to give the particle's new position:

x(t+1) = (3.0, 4.0) + (-1.64, -1.83)
 = (1.36, 2.17)

Recall that the optimal solution is (x, y) = (0, 0). Observe that the update process has improved
the old position or solution from (3.0, 4.0) to (1.36, 2.17). If you examine the update process,
you'll see that the new velocity is the old velocity (times a weight) plus a factor that depends on
a particle's best known position, plus another factor that depends on the best known position
from all particles in the swarm. Therefore, a particle's new position tends to move toward a
better position based on the particle's best known position and the best known position from all
particles.

Training using PSO

The implementation of method Train begins:

public double[] Train(double[][] trainData, int numParticles, int maxEpochs)
{
 int numWeights = (this.numInput * this.numHidden) + this.numHidden +
 (this.numHidden * this.numOutput) + this.numOutput;
. . .

136

Method Train assumes that the training data has the dependent variable being predicted, iris
flower species in the case of the demo, stored in the last column of matrix trainData. Next,

relevant local variables are set up:

int epoch = 0;
double minX = -10.0; // for each weight
double maxX = 10.0;
double w = 0.729; // inertia weight
double c1 = 1.49445; // cognitive weight
double c2 = 1.49445; // social weight
double r1, r2; // cognitive and social randomizations

Variable epoch is the main loop counter variable. Variables minX and maxX set limits for each

weight and bias value. Setting limits in this way is called weight restriction. In general, you
should use weight restriction only with x-data that has been normalized, or where the
magnitudes are all roughly between -10.0 and +10.0.

Variable w, called the inertia weight, holds a value that influences the extent a particle will keep

moving in its current direction. Variables c1 and c2 hold values that determine the influence of a

particle's best known position, and the best known position of any particle in the swarm. The
values of w, c1, and c2 used here are ones recommended by research.

Next, the swarm is created:

Particle[] swarm = new Particle[numParticles];
double[] bestGlobalPosition = new double[numWeights];
double bestGlobalError = double.MaxValue;

The definition of class Particle is presented in Listing 5-c.

private class Particle
{
 public double[] position; // equivalent to NN weights
 public double error; // measure of fitness
 public double[] velocity;

 public double[] bestPosition; // best position found so far by this Particle
 public double bestError;

 public Particle(double[] position, double error, double[] velocity,
 double[] bestPosition, double bestError)
 {
 this.position = new double[position.Length];
 position.CopyTo(this.position, 0);
 this.error = error;
 this.velocity = new double[velocity.Length];
 velocity.CopyTo(this.velocity, 0);
 this.bestPosition = new double[bestPosition.Length];
 bestPosition.CopyTo(this.bestPosition, 0);
 this.bestError = bestError;
 }
}

Listing 5-c: Particle Class Definition

137

Class Particle is a container class that holds a virtual position, velocity, and error associated
with the position. A minor design alternative is to use a structure instead of a class. The demo
program defines class Particle inside class NeuralNetwork. If you refactor the demo code to
another programming language that does not support nested classes, you'll have to define class
Particle as a standalone class.

Method Train initializes the swarm of particles with his code:

for (int i = 0; i < swarm.Length; ++i)
{
 double[] randomPosition = new double[numWeights];
 for (int j = 0; j < randomPosition.Length; ++j)
 randomPosition[j] = (maxX - minX) * rnd.NextDouble() + minX;

 double error = MeanSquaredError(trainData, randomPosition);
 double[] randomVelocity = new double[numWeights];

 for (int j = 0; j < randomVelocity.Length; ++j)
 {
 double lo = 0.1 * minX;
 double hi = 0.1 * maxX;
 randomVelocity[j] = (hi - lo) * rnd.NextDouble() + lo;
 }
 swarm[i] = new Particle(randomPosition, error, randomVelocity,
 randomPosition, error);

 // does current Particle have global best position/solution?
 if (swarm[i].error < bestGlobalError)
 {
 bestGlobalError = swarm[i].error;
 swarm[i].position.CopyTo(bestGlobalPosition, 0);
 }
}

There's quite a lot going on here, and so you may want to refactor the code into a method
named something like InitializeSwarm. For each particle, a random position is generated,
subject to the minX and maxX constraints. The random position is fed to helper method

MeanSquaredError to determine the associated error. A significant design alternative is to use a
different form of error called the mean cross entropy error.

Because a particle velocity consists of values that are added to the particle's current position,
initial random velocity values are set to be smaller (on average, one-tenth) than initial position
values. The 0.1 scaling factor is to a large extent arbitrary, but has worked well in practice.

After a random position and velocity have been created, those values are fed to the Particle

constructor. The call to the constructor may look a bit odd at first glance. The last two
arguments represent the particle's best position found and the error associated with that
position. So, at particle initialization, these best-values are the initial position and error values.

After initializing the swarm, method Train begins the main loop, which uses PSO to seek a set of
best weights:

int[] sequence = new int[numParticles]; // process particles in random order

138

for (int i = 0; i < sequence.Length; ++i)
 sequence[i] = i;

while (epoch < maxEpochs)
{
 double[] newVelocity = new double[numWeights];
 double[] newPosition = new double[numWeights];
 double newError;
 Shuffle(sequence);
 . . .

In general, when using PSO it is better to process the virtual particles in random order. Local
array sequence holds the indices of the particles and the indices are randomized using a helper

method Shuffle, which uses the Fisher-Yates algorithm:

private void Shuffle(int[] sequence)
{
 for (int i = 0; i < sequence.Length; ++i)
 {
 int ri = rnd.Next(i, sequence.Length);
 int tmp = sequence[ri];
 sequence[ri] = sequence[i];
 sequence[i] = tmp;
 }
}

The main processing loop executes a fixed maxEpochs times. An important alternative is to exit

early if the current best error drops below some small value. The code could resemble:

if (bestGlobalError < exitError)
 break;

Here, exitError would be passed as a parameter to method Train or the Particle constructor.

The training method continues by updating each particle. The first step is to compute a new
random velocity (speed and direction) based on the current velocity, the particle's best known
position, and the swarm's best known position:

for (int pi = 0; pi < swarm.Length; ++pi) // each Particle (index)
{
 int i = sequence[pi];
 Particle currP = swarm[i]; // for coding convenience

 for (int j = 0; j < currP.velocity.Length; ++j) // each x-value of the velocity
 {
 r1 = rnd.NextDouble();
 r2 = rnd.NextDouble();

 newVelocity[j] = (w * currP.velocity[j]) +
 (c1 * r1 * (currP.bestPosition[j] - currP.position[j])) +
 (c2 * r2 * (bestGlobalPosition[j] - currP.position[j]));
 }
 newVelocity.CopyTo(currP.velocity, 0);

139

This code is the heart of the PSO algorithm, and it is unlikely you will need to modify it. After a
particle's new velocity has been computed, that velocity is used to compute the particle's new
position, which represents the neural network's set of weights and bias values:

for (int j = 0; j < currP.position.Length; ++j)
{
 newPosition[j] = currP.position[j] + newVelocity[j]; // compute new position
 if (newPosition[j] < minX) // keep in range
 newPosition[j] = minX;
 else if (newPosition[j] > maxX)
 newPosition[j] = maxX;
}
newPosition.CopyTo(currP.position, 0);

Notice the new position is constrained by minX and maxX, which is essentially implementing

neural network weight restriction. A minor design alternative is to remove this constraining
mechanism. After the current particle's new position has been determined, the error associated
with that position is computed:

newError = MeanSquaredError(trainData, newPosition);
currP.error = newError;
if (newError < currP.bestError) // new particle best?
{
 newPosition.CopyTo(currP.bestPosition, 0);
 currP.bestError = newError;
}

if (newError < bestGlobalError) // new global best?
{
 newPosition.CopyTo(bestGlobalPosition, 0);
 bestGlobalError = newError;
}

At this point, method Train has finished processing each particle, and so the main loop counter
variable is updated. A significant design addition is to implement code that simulates the death
of a particle. The idea is to kill a particle with a small probability, and then give birth to a new
particle at a random location. This helps prevent the swarm from getting stuck at a non-optimal
solution at the risk of killing a good particle (one that is moving to an optimal solution).

After the main loop finishes, method Train concludes. The best position (weights) found is
copied into the neural network's weight and bias matrices and arrays, using class method
SetWeights, and these best weights are also explicitly returned:

. . .

 SetWeights(bestGlobalPosition); // best position is a set of weights
 double[] retResult = new double[numWeights];
 Array.Copy(bestGlobalPosition, retResult, retResult.Length);
 return retResult;
} // Train

140

Method SetWeights is presented in the complete demo program source code at the end of this
chapter. Notice all the weights and bias values are stored in a single array, which corresponds
to the best position found by any particle. This means that there is an implied ordering of the
weights. The demo program assumes input-to-hidden weights are stored first, followed by
hidden node biases, followed by hidden-to-output weights, followed by output node biases.

Other Scenarios

This chapter presents all the key information needed to understand and implement a neural
network system. There are many additional, advanced topics you might wish to investigate. The
biggest challenge when working with neural networks is avoiding over-fitting. Over-fitting occurs
when a neural network is trained so that the resulting model has perfect or near-perfect
accuracy on the training data, but the model predicts poorly when presented with new data.
Holding out a test data set can help identify when over-fitting has occurred. A closely related
technique is called k-fold cross validation. Instead of dividing the source data into two sets, the
data is divided into k sets, where k is often 10.

Another approach for dealing with over-fitting is to divide the source data into three sets: a
training set, a validation set, and a test set. The neural network is trained using the training data,
but during training, the current set of weights and bias values are periodically applied to the
validation data. Error on both the training and validation data will generally decrease during
training, but when over-fitting starts to occur, error on the validation data will begin to increase,
indicating training should stop. Then, the final model is applied to the test data to get a rough
estimate of the model's accuracy.

A relatively new technique to deal with over-fitting is called dropout training. As each training
item is presented to the neural network, half of the hidden nodes are ignored. This prevents
hidden nodes from co-adapting with each other, and results in a robust model that generalizes
well. Drop-out training can also be applied to input nodes. A related idea is to add random noise
to input values. This is sometimes called jittering.

Neural networks with multiple layers of hidden nodes are often called deep neural networks. In
theory, a neural network with a single, hidden layer can solve most classification problems. This
is a consequence of what is known as the universal approximation theorem, or sometimes,
Cybenko's theorem. However, for some problems, such as speech recognition, deep neural
networks can be more effective than ordinary neural networks.

The neural network presented in this chapter measured error using mean squared error. Some
research evidence suggests an alternative measure, called cross entropy error, can generate
more accurate neural network models. In my opinion, the research supporting the superiority of
cross entropy error over mean squared error is fairly convincing, but the improvement gained by
using cross entropy error is small. In spite of the apparent superiority of cross entropy error, the
use of mean squared error seems to be more common.

Ordinary neural networks are called feed-forward networks because when output values are
computed, information flows from input nodes to hidden nodes to output nodes. It is possible to
design neural networks where some or all of the hidden nodes have an additional connection
that feeds back into themselves. These are called recurrent neural networks.

141

Chapter 5 Complete Demo Program Source Code

using System;
namespace NeuralClassification
{
 class NeuralProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("\nBegin neural network demo\n");
 Console.WriteLine("Goal is to predict species from color, petal length, width \n");
 Console.WriteLine("Raw data looks like: \n");
 Console.WriteLine("blue, 1.4, 0.3, setosa");
 Console.WriteLine("pink, 4.9, 1.5, versicolor");
 Console.WriteLine("teal, 5.6, 1.8, virginica \n");

 double[][] trainData = new double[24][];
 trainData[0] = new double[] { 1, 0, 1.4, 0.3, 1, 0, 0 };
 trainData[1] = new double[] { 0, 1, 4.9, 1.5, 0, 1, 0 };
 trainData[2] = new double[] { -1, -1, 5.6, 1.8, 0, 0, 1 };
 trainData[3] = new double[] { -1, -1, 6.1, 2.5, 0, 0, 1 };
 trainData[4] = new double[] { 1, 0, 1.3, 0.2, 1, 0, 0 };
 trainData[5] = new double[] { 0, 1, 1.4, 0.2, 1, 0, 0 };
 trainData[6] = new double[] { 1, 0, 6.6, 2.1, 0, 0, 1 };
 trainData[7] = new double[] { 0, 1, 3.3, 1.0, 0, 1, 0 };
 trainData[8] = new double[] { -1, -1, 1.7, 0.4, 1, 0, 0 };
 trainData[9] = new double[] { 0, 1, 1.5, 0.1, 0, 1, 1 };
 trainData[10] = new double[] { 0, 1, 1.4, 0.2, 1, 0, 0 };
 trainData[11] = new double[] { 0, 1, 4.5, 1.5, 0, 1, 0 };
 trainData[12] = new double[] { 1, 0, 1.4, 0.2, 1, 0, 0 };
 trainData[13] = new double[] { -1, -1, 5.1, 1.9, 0, 0, 1 };
 trainData[14] = new double[] { 1, 0, 6.0, 2.5, 0, 0, 1 };
 trainData[15] = new double[] { 1, 0, 3.9, 1.4, 0, 1, 0 };
 trainData[16] = new double[] { 0, 1, 4.7, 1.4, 0, 1, 0 };
 trainData[17] = new double[] { -1, -1, 4.6, 1.5, 0, 1, 0 };
 trainData[18] = new double[] { -1, -1, 4.5, 1.7, 0, 0, 1 };
 trainData[19] = new double[] { 0, 1, 4.5, 1.3, 0, 1, 0 };
 trainData[20] = new double[] { 1, 0, 1.5, 0.2, 1, 0, 0 };
 trainData[21] = new double[] { 0, 1, 5.8, 2.2, 0, 0, 1 };
 trainData[22] = new double[] { 0, 1, 4.0, 1.3, 0, 1, 0 };
 trainData[23] = new double[] { -1, -1, 5.8, 1.8, 0, 0, 1 };

 double[][] testData = new double[6][];
 testData[0] = new double[] { 1, 0, 1.5, 0.2, 1, 0, 0 };
 testData[1] = new double[] { -1, -1, 5.9, 2.1, 0, 0, 1 };
 testData[2] = new double[] { 0, 1, 1.4, 0.2, 1, 0, 0 };
 testData[3] = new double[] { 0, 1, 4.7, 1.6, 0, 1, 0 };
 testData[4] = new double[] { 1, 0, 4.6, 1.3, 0, 1, 0 };
 testData[5] = new double[] { 1, 0, 6.3, 1.8, 0, 0, 1 };

 Console.WriteLine("Encoded training data is: \n");
 ShowData(trainData, 5, 1, true);

 Console.WriteLine("Encoded test data is: \n");
 ShowData(testData, 2, 1, true);

 Console.WriteLine("\nCreating a 4-input, 6-hidden, 3-output neural network");
 Console.WriteLine("Using tanh and softmax activations \n");
 int numInput = 4;

142

 int numHidden = 6;
 int numOutput = 3;
 NeuralNetwork nn = new NeuralNetwork(numInput, numHidden, numOutput);

 int numParticles = 12;
 int maxEpochs = 500;

 Console.WriteLine("Setting numParticles = " + numParticles);
 Console.WriteLine("Setting maxEpochs = " + maxEpochs);

 Console.WriteLine("\nBeginning training using Particle Swarm Optimization");
 double[] bestWeights = nn.Train(trainData, numParticles, maxEpochs);
 Console.WriteLine("Training complete \n");
 Console.WriteLine("Final neural network weights and bias values:");
 ShowVector(bestWeights, 10, 3, true);

 nn.SetWeights(bestWeights);
 double trainAcc = nn.Accuracy(trainData);
 Console.WriteLine("\nAccuracy on training data = " + trainAcc.ToString("F4"));

 double testAcc = nn.Accuracy(testData);
 Console.WriteLine("Accuracy on test data = " + testAcc.ToString("F4"));

 Console.WriteLine("\nEnd neural network demo\n");
 Console.ReadLine();
 } // Main

 static void ShowVector(double[] vector, int valsPerRow, int decimals, bool newLine)
 {
 for (int i = 0; i < vector.Length; ++i)
 {
 if (i % valsPerRow == 0) Console.WriteLine("");
 Console.Write(vector[i].ToString("F" + decimals).PadLeft(decimals + 4) + " ");
 }
 if (newLine == true) Console.WriteLine("");
 }

 static void ShowData(double[][] data, int numRows, int decimals, bool indices)
 {
 for (int i = 0; i < numRows; ++i)
 {
 if (indices == true)
 Console.Write("[" + i.ToString().PadLeft(2) + "] ");
 for (int j = 0; j < data[i].Length; ++j)
 {
 double v = data[i][j];
 if (v >= 0.0)
 Console.Write(" "); // '+'
 Console.Write(v.ToString("F" + decimals) + " ");
 }
 Console.WriteLine("");
 }
 Console.WriteLine(". . .");
 int lastRow = data.Length - 1;
 if (indices == true)
 Console.Write("[" + lastRow.ToString().PadLeft(2) + "] ");
 for (int j = 0; j < data[lastRow].Length; ++j)
 {
 double v = data[lastRow][j];

143

 if (v >= 0.0)
 Console.Write(" "); // '+'
 Console.Write(v.ToString("F" + decimals) + " ");
 }
 Console.WriteLine("\n");
 }
 } // Program

 public class NeuralNetwork
 {
 private int numInput; // number of input nodes
 private int numHidden;
 private int numOutput;

 private double[] inputs;
 private double[][] ihWeights; // input-hidden
 private double[] hBiases;
 private double[] hOutputs;

 private double[][] hoWeights; // hidden-output
 private double[] oBiases;
 private double[] outputs;

 private Random rnd;

 public NeuralNetwork(int numInput, int numHidden, int numOutput)
 {
 this.numInput = numInput;
 this.numHidden = numHidden;
 this.numOutput = numOutput;
 this.inputs = new double[numInput];
 this.ihWeights = MakeMatrix(numInput, numHidden);
 this.hBiases = new double[numHidden];
 this.hOutputs = new double[numHidden];
 this.hoWeights = MakeMatrix(numHidden, numOutput);
 this.oBiases = new double[numOutput];
 this.outputs = new double[numOutput];
 this.rnd = new Random(0);
 } // ctor

 private static double[][] MakeMatrix(int rows, int cols) // helper for ctor
 {
 double[][] result = new double[rows][];
 for (int r = 0; r < result.Length; ++r)
 result[r] = new double[cols];
 return result;
 }

 public void SetWeights(double[] weights)
 {
 // copy weights and biases in weights[] array to i-h weights,
 // i-h biases, h-o weights, h-o biases
 int numWeights = (numInput * numHidden) + (numHidden * numOutput) +
 numHidden + numOutput;
 if (weights.Length != numWeights)
 throw new Exception("Bad weights array length: ");

 int k = 0; // points into weights param

144

 for (int i = 0; i < numInput; ++i)
 for (int j = 0; j < numHidden; ++j)
 ihWeights[i][j] = weights[k++];
 for (int i = 0; i < numHidden; ++i)
 hBiases[i] = weights[k++];
 for (int i = 0; i < numHidden; ++i)
 for (int j = 0; j < numOutput; ++j)
 hoWeights[i][j] = weights[k++];
 for (int i = 0; i < numOutput; ++i)
 oBiases[i] = weights[k++];
 }

 public double[] ComputeOutputs(double[] xValues)
 {
 double[] hSums = new double[numHidden]; // hidden nodes sums scratch array
 double[] oSums = new double[numOutput]; // output nodes sums

 for (int i = 0; i < xValues.Length; ++i) // copy x-values to inputs
 this.inputs[i] = xValues[i];

 for (int j = 0; j < numHidden; ++j) // compute i-h sum of weights * inputs
 for (int i = 0; i < numInput; ++i)
 hSums[j] += this.inputs[i] * this.ihWeights[i][j]; // note +=

 for (int i = 0; i < numHidden; ++i) // add biases to input-to-hidden sums
 hSums[i] += this.hBiases[i];

 for (int i = 0; i < numHidden; ++i) // apply activation
 this.hOutputs[i] = HyperTan(hSums[i]); // hard-coded

 for (int j = 0; j < numOutput; ++j) // compute h-o sum of weights * hOutputs
 for (int i = 0; i < numHidden; ++i)
 oSums[j] += hOutputs[i] * hoWeights[i][j];

 for (int i = 0; i < numOutput; ++i) // add biases to input-to-hidden sums
 oSums[i] += oBiases[i];

 double[] softOut = Softmax(oSums); // all outputs at once for efficiency
 Array.Copy(softOut, outputs, softOut.Length);

 double[] retResult = new double[numOutput];
 Array.Copy(this.outputs, retResult, retResult.Length);
 return retResult;
 }

 private static double HyperTan(double x)
 {
 if (x < -20.0)
 return -1.0; // approximation is correct to 30 decimals
 else if (x > 20.0)
 return 1.0;
 else
 return Math.Tanh(x);
 }

 private static double[] Softmax(double[] oSums)
 {
 // does all output nodes at once so scale doesn't have to be re-computed each time
 // determine max output-sum

145

 double max = oSums[0];
 for (int i = 0; i < oSums.Length; ++i)
 if (oSums[i] > max) max = oSums[i];

 // determine scaling factor -- sum of exp(each val - max)
 double scale = 0.0;
 for (int i = 0; i < oSums.Length; ++i)
 scale += Math.Exp(oSums[i] - max);

 double[] result = new double[oSums.Length];
 for (int i = 0; i < oSums.Length; ++i)
 result[i] = Math.Exp(oSums[i] - max) / scale;

 return result; // now scaled so that xi sum to 1.0
 }

 public double[] Train(double[][] trainData, int numParticles, int maxEpochs)
 {
 int numWeights = (this.numInput * this.numHidden) + this.numHidden +
 (this.numHidden * this.numOutput) + this.numOutput;

 // use PSO to seek best weights
 int epoch = 0;
 double minX = -10.0; // for each weight. assumes data is normalized or 'nice'
 double maxX = 10.0;
 double w = 0.729; // inertia weight
 double c1 = 1.49445; // cognitive weight
 double c2 = 1.49445; // social weight
 double r1, r2; // cognitive and social randomizations

 Particle[] swarm = new Particle[numParticles];
 // best solution found by any particle in the swarm
 double[] bestGlobalPosition = new double[numWeights];
 double bestGlobalError = double.MaxValue; // smaller values better

 // initialize each Particle in the swarm with random positions and velocities
 double lo = 0.1 * minX;
 double hi = 0.1 * maxX;
 for (int i = 0; i < swarm.Length; ++i)
 {
 double[] randomPosition = new double[numWeights];
 for (int j = 0; j < randomPosition.Length; ++j)
 randomPosition[j] = (maxX - minX) * rnd.NextDouble() + minX;

 double error = MeanSquaredError(trainData, randomPosition);
 double[] randomVelocity = new double[numWeights];

 for (int j = 0; j < randomVelocity.Length; ++j)
 randomVelocity[j] = (hi - lo) * rnd.NextDouble() + lo;

 swarm[i] = new Particle(randomPosition, error, randomVelocity,
 randomPosition, error);

 // does current Particle have global best position/solution?
 if (swarm[i].error < bestGlobalError)
 {
 bestGlobalError = swarm[i].error;
 swarm[i].position.CopyTo(bestGlobalPosition, 0);
 }

146

 }

 // main PSO algorithm
 int[] sequence = new int[numParticles]; // process particles in random order
 for (int i = 0; i < sequence.Length; ++i)
 sequence[i] = i;

 while (epoch < maxEpochs)
 {
 double[] newVelocity = new double[numWeights]; // step 1
 double[] newPosition = new double[numWeights]; // step 2
 double newError; // step 3

 Shuffle(sequence); // move particles in random sequence

 for (int pi = 0; pi < swarm.Length; ++pi) // each Particle (index)
 {
 int i = sequence[pi];
 Particle currP = swarm[i]; // for coding convenience

 // 1. compute new velocity
 for (int j = 0; j < currP.velocity.Length; ++j) // each value of the velocity
 {
 r1 = rnd.NextDouble();
 r2 = rnd.NextDouble();

 // velocity depends on old velocity, best position of particle, and
 // best position of any particle
 newVelocity[j] = (w * currP.velocity[j]) +
 (c1 * r1 * (currP.bestPosition[j] - currP.position[j])) +
 (c2 * r2 * (bestGlobalPosition[j] - currP.position[j]));
 }
 newVelocity.CopyTo(currP.velocity, 0);

 // 2. use new velocity to compute new position
 for (int j = 0; j < currP.position.Length; ++j)
 {
 newPosition[j] = currP.position[j] + newVelocity[j];
 if (newPosition[j] < minX) // keep in range
 newPosition[j] = minX;
 else if (newPosition[j] > maxX)
 newPosition[j] = maxX;
 }
 newPosition.CopyTo(currP.position, 0);

 // 3. compute error of new position
 newError = MeanSquaredError(trainData, newPosition);
 currP.error = newError;

 if (newError < currP.bestError) // new particle best?
 {
 newPosition.CopyTo(currP.bestPosition, 0);
 currP.bestError = newError;
 }

 if (newError < bestGlobalError) // new global best?
 {
 newPosition.CopyTo(bestGlobalPosition, 0);
 bestGlobalError = newError;

147

 }
 } // each Particle
 ++epoch;
 } // while

 SetWeights(bestGlobalPosition); // best position is a set of weights
 double[] retResult = new double[numWeights];
 Array.Copy(bestGlobalPosition, retResult, retResult.Length);
 return retResult;
 } // Train

 private void Shuffle(int[] sequence)
 {
 for (int i = 0; i < sequence.Length; ++i)
 {
 int ri = rnd.Next(i, sequence.Length);
 int tmp = sequence[ri];
 sequence[ri] = sequence[i];
 sequence[i] = tmp;
 }
 }

 private double MeanSquaredError(double[][] trainData, double[] weights)
 {
 this.SetWeights(weights); // copy the weights to evaluate in

 double[] xValues = new double[numInput]; // inputs
 double[] tValues = new double[numOutput]; // targets
 double sumSquaredError = 0.0;
 for (int i = 0; i < trainData.Length; ++i) // walk through each training item
 {
 // the following assumes data has all x-values first, followed by y-values!
 Array.Copy(trainData[i], xValues, numInput); // extract inputs
 Array.Copy(trainData[i], numInput, tValues, 0, numOutput); // extract targets
 double[] yValues = this.ComputeOutputs(xValues);
 for (int j = 0; j < yValues.Length; ++j)
 sumSquaredError += ((yValues[j] - tValues[j]) * (yValues[j] - tValues[j]));
 }
 return sumSquaredError / trainData.Length;
 }

 public double Accuracy(double[][] testData)
 {
 // percentage correct using winner-takes all
 int numCorrect = 0;
 int numWrong = 0;
 double[] xValues = new double[numInput]; // inputs
 double[] tValues = new double[numOutput]; // targets
 double[] yValues; // computed Y

 for (int i = 0; i < testData.Length; ++i)
 {
 Array.Copy(testData[i], xValues, numInput); // parse test data
 Array.Copy(testData[i], numInput, tValues, 0, numOutput);
 yValues = this.ComputeOutputs(xValues);
 int maxIndex = MaxIndex(yValues); // which cell in yValues has largest value?

 if (tValues[maxIndex] == 1.0) // ugly
 ++numCorrect;

148

 else
 ++numWrong;
 }
 return (numCorrect * 1.0) / (numCorrect + numWrong);
 }

 private static int MaxIndex(double[] vector) // helper for Accuracy()
 {
 // index of largest value
 int bigIndex = 0;
 double biggestVal = vector[0];
 for (int i = 0; i < vector.Length; ++i)
 {
 if (vector[i] > biggestVal)
 {
 biggestVal = vector[i];
 bigIndex = i;
 }
 }
 return bigIndex;
 }

 // --
 private class Particle
 {
 public double[] position; // equivalent to NN weights
 public double error; // measure of fitness
 public double[] velocity;

 public double[] bestPosition; // best position found by this Particle
 public double bestError;

 public Particle(double[] position, double error, double[] velocity,
 double[] bestPosition, double bestError)
 {
 this.position = new double[position.Length];
 position.CopyTo(this.position, 0);
 this.error = error;
 this.velocity = new double[velocity.Length];
 velocity.CopyTo(this.velocity, 0);
 this.bestPosition = new double[bestPosition.Length];
 bestPosition.CopyTo(this.bestPosition, 0);
 this.bestError = bestError;
 }
 }
 // --

 } // NeuralNetwork
} // ns

	Table of Contents
	The Story behind the Succinctly Series of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Acknowledgements
	Chapter 1 k-Means Clustering
	Introduction
	Understanding the k-Means Algorithm
	Demo Program Overall Structure
	Loading Data from a Text File
	The Key Data Structures
	The Clusterer Class
	The Cluster Method
	Clustering Initialization
	Updating the Centroids
	Updating the Clustering
	Summary
	Chapter 1 Complete Demo Program Source Code

	Chapter 2 Categorical Data Clustering
	Introduction
	Understanding Category Utility
	Understanding the GACUC Algorithm
	Demo Program Overall Structure
	The Key Data Structures
	The CatClusterer Class
	The Cluster Method
	The CategoryUtility Method
	Clustering Initialization
	Reservoir Sampling
	Clustering Mixed Data
	Chapter 2 Complete Demo Program Source Code

	Chapter 3 Logistic Regression Classification
	Introduction
	Understanding Logistic Regression Classification
	Demo Program Overall Structure
	Data Normalization
	Creating Training and Test Data
	Defining the LogisticClassifier Class
	Error and Accuracy
	Understanding Simplex Optimization
	Training
	Other Scenarios
	Chapter 3 Complete Demo Program Source Code

	Chapter 4 Naive Bayes Classification
	Introduction
	Understanding Naive Bayes
	Demo Program Structure
	Defining the BayesClassifer Class
	The Training Method
	Method Probability
	Method Accuracy
	Converting Numeric Data to Categorical Data
	Comments
	Chapter 4 Complete Demo Program Source Code

	Chapter 5 Neural Network Classification
	Introduction
	Understanding Neural Network Classification
	Demo Program Overall Structure
	Defining the NeuralNetwork Class
	Understanding Particle Swarm Optimization
	Training using PSO
	Other Scenarios
	Chapter 5 Complete Demo Program Source Code

